Abstract:
An electric storage device according to the present invention includes a case having a case body and a cover plate, the cover plate has a projection to be inserted into the opening of the case body, the projection is in contact with or adjacent to the inner surface of the opening edge of the case body in the second direction, and the projection is locally located in the vicinity of the circumferential edge of the cover plate.
Abstract:
An energy storage apparatus includes: an energy storage device including an electrode terminal; an outer housing containing the energy storage device; a first outer electrode attached to an outside of the outer housing; an electrical device disposed inside the outer housing; a first electrical conductor electrically connecting the first outer electrode and the electrical device; and a second electrical conductor electrically connecting the electrical device and the electrode terminal. The electrode terminal and the first outer electrode are disposed on opposite sides of the electrical device in a plane along a surface of the energy storage device.
Abstract:
An electric storage apparatus includes a plurality of electric storage devices aligned in a first direction and each having an electrode terminal extending in a direction orthogonal to the first direction; a holding member configured to hold the plurality of electric storage devices; and a circuit case housing a circuit thereinside, wherein the holding member has an opening, and the circuit case is formed into a size corresponding to the opening so as to close the opening.
Abstract:
The electric storage device according to the present invention includes a case having a case body and a cover plate, the case body includes a step portion at an opening edge, the cover plate includes a projection that is inserted into the opening of the case body, and a portion of the projection opposes the step portion within the case body.
Abstract:
Provided is an electric storage device including: a first electrode plate, a second electrode plate having a polarity opposite to that of the first electrode plate, and a separator interposed between the first electrode plate and the second electrode plate, wherein the first electrode plate includes a current collector, a conductive layer laminated onto the current collector, and a mixture layer laminated onto the conductive layer, the mixture layer contains a binder and primary particles of an active material as its constituents, and the primary particles as a constituent of the mixture layer are partially retained in the conductive layer.
Abstract:
A switch failure diagnosis device for using in a current path between an electric device and an electric storage device includes plural switches, a switch terminal voltage detector, and a controller. The switches are connected parallel to each other in the current path. The switch terminal voltage detector outputs a switch terminal voltage detection signal. The controller is configured to: select the switches at different time in sequence and input an open instruction signal to each switch at the time when the switch is selected; and determine, based on the switch terminal voltage detection signal output while the open instruction signal is given, that at least one of the switches has a failure if the detected voltage is in a failure determination range.
Abstract:
An electrode plate is formed by current collectors retaining an active material. The electrode plate includes a first plate element having an active material non-retaining portion, which does not retain the active material, and active material retaining portions in substantially flat plate shapes, which retain the active material and are formed on both sides of the active material non-retaining portion, the active material non-retaining portion being folded so that the active material retaining portions face each other, and a second plate element having an active material non-retaining portion and an active material retaining portion in a substantially flat shape. The active material retaining portion of the second plate element is in contact with and superimposed on the active material retaining portions of the first plate element. The active material non-retaining portion of the second plate element is in contact with the active material non-retaining portion of the first plate element.
Abstract:
A cylindrical battery including: a battery case having a cylindrical shape; an electrode group disposed in the battery case, including a positive electrode, a negative electrode, and a separator, and having a pair of flat outer side surfaces opposed to each other; and a spacer disposed between an inner peripheral surface of the battery case and each of the flat outer side surfaces of the electrode group. The spacer has a case contact portion that extends continuously from a first axial end to a second axial end and is in contact with the inner peripheral surface of the battery case, and the case contact portion is formed with a communicating portion that communicates spaces partitioned by the case contact portion.
Abstract:
A condition estimation device for estimating condition of an electric storage device includes a voltage detector and a controller. The voltage detector is configured to detect a voltage of the electric storage device. The controller is configured to perform a distinctive point detection process to detect a distinctive point based on the voltage detected by the voltage detector, and an estimation process to estimate the condition of the electric storage device based on the distinctive point detected in the distinctive point detection process. The distinctive point is a point at which a variation in voltage per unit remaining capacity or per unit time of the electric storage device during charge or discharge is a local maximum value.
Abstract:
Provided is a nonaqueous electrolyte secondary cell including: a case; an element housed in the case, including at least a positive electrode member, a negative electrode member and a separator; and an electrolyte solution poured into the case, wherein when in the state of the case being installed, in the direction perpendicular to the liquid surface of the electrolyte solution, the length between the highest position and the lowest position of the element is represented by L1 and the length between the liquid surface and the lowest position of the element is represented by L2, the ratio calculated with the formula L2/L1×100 is 10% or more and 100% or less.