Abstract:
The present invention provides a method for detecting an uplink synchronization signal in a wireless access system supporting a high frequency band, a method for designing a detection filter for the same, and devices for supporting the methods. A method by which a base station detects a random access channel (RACH) signal in a wireless access system supporting a high frequency band, according to one embodiment of the present invention, comprises the steps of: allocating a cyclic shift value used in the base station; configuring a reception signal vector for signals transmitted through the RACH; deriving a cyclic shift candidate greater than or equal to a reference value from the reception signal vector by using a first detection filter; and detecting the RACH signal from the cyclic shift candidate by using a second detection filter, wherein the first detection filter and the second detection filter can be set on the basis of the cyclic shift value.
Abstract:
The present invention relates to a method of transmitting and receiving channel quality indicator (CQI) information that relates to a channel aging effect in an environment where a time-varying channel characteristic is maximized, and a device supporting same. According to an embodiment of the present invention, a method of reporting multi-channel quality indicator (CQI) information by a terminal in a wireless access system that supports an environment where a time-varying channel characteristic is maximized may include receiving a first reference signal, obtaining information on a first CQI by using the first reference signal, receiving a second reference signal, obtaining information on a second CQI by using the second reference signal, reporting the information on the first CQI, and reporting the information on the second CQI.
Abstract:
A communication apparatus in a multi-antenna wireless communication system is disclosed. In detail, the communication apparatus includes a first processor for processing a baseband signal defined as a first virtual antenna group, a second processor for mapping a signal defined as a second virtual antenna group and the baseband signal defined as the first virtual antenna group in order to remove coupling between antennas, and an antenna module for mapping the signal defined as the second virtual antenna group and a signal defined as a multiple physical antenna group.
Abstract:
The present invention provides hierarchical modulation methods for robust symbol transmission and reception in a wireless access system, and devices supporting same. A method for transmitting a hierarchically modulated (HM) symbol in a wireless access system, according to an embodiment of the present invention, comprises the steps of: generating a first symbol; generating a second symbol; generating an HM symbol by combining the first symbol and the second symbol; and transmitting the HM symbol, wherein the first symbol can be generated by means of a spatial multiplexing (SM) technique, a beam-forming technique, or a space-time coding technique and the second symbol can be generated by means of a spatial multiplexing (SM) technique, a beam-forming technique, or a space-time coding technique.
Abstract:
The present invention relates to a method for transceiving a signal in a wireless communication system. A method for transceiving a signal in a wireless communication system according to one embodiment of the present invention comprises the steps of: deducing a channel from a transmission antenna of a transceiver; generating a reference signal by combining the deduced channel and a transmission signal from the transmission antenna; converting the reference signal into an analog signal; receiving a data signal and a self-interference signal by means of a reception antenna of the transceiver; and canceling the self-interference signal from the received data signal by means of the converted reference signal, wherein deducing a channel and combining signals are performed in the digital domain and discarding the self-interference signal is performed in the analog domain.
Abstract:
A method and user equipment (UE) for transmitting Acknowledgement/Negative Acknowledgement (ACK/NACK) information in a wireless communication system. The UE determines a Physical Uplink Control Channel (PUCCH) format and a PUCCH resource through which ACK/NACK information for downlink transmission in a downlink subframe set including M (M>1) downlink subframes is to be transmitted. The UE transmits the ACK/NACK information using the PUCCH format and the PUCCH resource in one uplink subframe. More than one serving cell is configured for the UE and the more than one serving cell includes one Primary Cell (PCell) and at least one Secondary Cell (SCell). The ACK/NACK information is transmitted using a PUCCH format 1b, when the ACK/NACK information corresponds to one Physical Downlink Shared Channel (PDSCH) without a corresponding Physical Downlink Control Channel (PDCCH) received only on the PCell in the downlink subframe set.
Abstract:
According to one embodiment of the present invention, a method for transmitting a reception acknowledgement response by an user equipment for performing device-to-device communication in a wireless communication system, comprises the steps of: receiving a physical downlink shared channel; and transmitting a reception acknowledgement response for the physical downlink shared channel on a resource for a physical uplink control channel, wherein the reception acknowledgement response is transmitted according to a setting of a round trip time (RTT), and the RTT is set for each user equipment.
Abstract:
Disclosed are an apparatus and a method for transmitting/receiving control information in a wireless communication system. In a repeater according to the present invention, a receiving antenna can receive control information for a hybrid automatic repeat reQuest ACKnowledgement (HARQ ACK) feedback on the data transmission of a base station from the base station through higher layer signaling. On the basis of the control information, a processor can determine a resource in an upper link control channel to be used for the transmission of the HARQ feedback. A transmitting antenna can transmit the HARQ feedback to the base station through the resource that has been determined.
Abstract:
The present invention relates to a method for newly defining a synchronization signal to be used in an ultrahigh frequency band and acquiring downlink synchronization by using the synchronization signal, and a device for supporting the same. A method by which an eNode B (eNB) transmits a synchronization signal for compensating for a carrier frequency offset in a wireless access system supporting an ultrahigh frequency band, according to one embodiment of the present invention, can comprise the steps of: generating a first repetitive synchronization signal having a first repetitive characteristic; generating a second repetitive synchronization signal having a second repetitive characteristic; and transmitting the first repetitive synchronization signal and the second repetitive synchronization signal in the same subframe.
Abstract:
The present invention provides various methods for transmitting a channel state information reference signal (CSI-RS) by varying a transmission period for each antenna port or antenna port group, and also provides apparatuses supporting the methods. The method for receiving a CSI-RS in a wireless access system according to one aspect of the present invention may comprise the steps of: receiving a CSI-RS component information element for setting CSI-RS transmission periods for two or more antenna ports to be mutually different; receiving CSI-RSs for each of the two or more antenna ports based on the CSI-RS component information element; and acquiring channel state information for each of the two or more antenna ports based on the received CSI-RS.