Abstract:
The invention has a support, a recording layer provided on the support, and a protective layer containing a hydrophilic polymer and silica-coated organic resin fine particles provided as the uppermost layer. The organic resin fine particles are preferably composed of at least one resin selected from the group consisting of polyacrylic acid resins, polyurethane resins, polystyrene resins, polyester resins, epoxy resins, phenolic resins, and melamine resins, and the protective layer preferably contains a mica compound.
Abstract:
A method of making a lithographic printing plate includes the steps of: a) providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) a coating on the support including a photopolymerizable layer, and, optionally, an intermediate layer between the photopolymerizable layer and the support, wherein the photopolymerizable layer includes a polymerizable compound and a polymerization initiator, b) image-wise exposing the coating in a plate setter, c) optionally, heating the precursor in a pre-heating unit, d) developing the precursor off-press in a gumming unit by treating the coating of the precursor with a gum solution, thereby removing the non-exposed areas of the photopolymerizable layer from the support, wherein the photopolymerizable layer further includes a polymer containing an acid group and a basic nitrogen-containing compound capable of neutralizing the acid group, or wherein the photopolymerizable layer further includes a polymer containing an acid group which is neutralized by a basic nitrogen-containing compound.
Abstract:
A thermal negative type lithographic printing original plate has a photosensitive layer featuring high sensitivity, excellent reproducibility in FM screening, and excellent print durability and chemical resistance at a minute image portion. A photosensitive composition for the photosensitive layer contains an alkali soluble resin having a monomer unit represented by the formula (I), a silane coupling agent represented by the formula (II), an infrared absorber, a radical polymerization initiator, and a polymerizable compound having an ethylenic double bond and an amount of the silane coupling agent is from 15 to 40% of the photosensitive composition by mass.
Abstract:
A lithographic printing plate precursor is provided which comprises an aluminum support having a hydrophilic surface and a coating provided thereon, said coating comprising a photopolymerisable composition having a polymerisable compound, a pigment dispersed with a dispersant, a polymerization initiator and a binder, characterized in that the dispersant is a compound free of —COOH, —PO3H2 or —OPO3H2 groups, and the polymerization initiator is a trihalomethyl-aryl sulphone wherein the aryl group is substituted by at least one electron-donating group and wherein the sum of the Hammett constants (sigma) of the substituting groups on said aryl group has a negative value. The printing plate precursor exhibits an excellent daylight stability and shelf-life.
Abstract:
Negative-working imageable element can be used to prepared lithographic printing plates. These elements include a water-soluble contrast dye having a λmax in the range of from about 450 to about 750 nm and having an absorption that is lower than 10% with respect to the absorption of the radiation absorbing compound in the element at the wavelength used for exposure. The contrast dye is present in sufficient H-aggregation such that less than 40% of the entire absorption spectrum from the contrast dye is contributed by it in non-H-aggregated form.
Abstract:
A non-ablative negative-working imageable element has first and second polymeric layers under a crosslinked silicone rubber layer. These elements can be used in a simple method to provide lithographic printing plates useful for waterless printing (no fountain solution). Processing after imaging is relatively simple using either water or an aqueous solution containing very little organic solvent to remove the imaged regions. The crosslinked silicone rubber layer is ink-repelling and only the first layer that is closest to the substrate contains an infrared radiation absorbing compound to provide thermal sensitivity.
Abstract:
There is provided a lithographic printing plate precursor that enables image recording using a laser and that provides an excellent scumming resistance and an excellent developability while maintaining a satisfactory printing durability. Also provided are a platemaking method, and a novel polymerizable monomer. A lithographic printing plate precursor has a support, and an image recording layer disposed thereon and containing a radical polymerization initiator and a polymerizable monomer that has a sulfonamide group and at least two ethylenically unsaturated groups; a lithographic printing plate platemaking method uses this lithographic printing plate precursor; and a polymerizable monomer has a sulfonamide group and at least two ethylenically unsaturated groups.
Abstract:
(1) A packaged body of lithographic printing plate precursors, wherein an image-recording layer or a protective layer of the outermost surface layer contains an inorganic layered compound. (2) A lithographic printing plate precursor having a protective layer containing an inorganic layered compound, and an image-recording layer containing a binder polymer. (3) A lithographic printing plate precursor having a protective layer containing an inorganic layered compound, and an image-recording layer containing an infrared absorber and an iodonium compound.
Abstract:
Negative-working imageable elements can be imaged and processed to provide lithographic printing plates. These imageable elements are sensitive to infrared radiation but are insensitive to “white” light and thus can be more easily handled under white light conditions. These properties are possible by incorporating a filter dye having a λmax of from about 300 to about 500 nm into the imageable layer of the imageable elements.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an intermediate layer; and an image-forming layer, and the intermediate layer contains a polymer (A) comprising a repeating unit (a1) represented by the formula (I) as defined herein.