Abstract:
Certain embodiments provide a system and method for measurement of the force applied to a bone-conduction oscillator during application to a subject, resolving the measured force relative to a pre-determined criteria, and providing an indication to the user to specify whether an external force applied to an applied force indication system coupled with a bone-conduction oscillator is within a pre-determined acceptable range. A mechanical arrangement is prescribed which allows the full extent of the force applied to be represented onto the pressure measurement apparatus. The system and apparatus may be applied onto or integrated into bone-conduction oscillators.
Abstract:
The invention relates to a hydraulically telescopic support device for a vehicle, in particular for a mobile loading crane, comprising a hydraulically movable piston-cylinder unit for extending and retracting the support device and a hydraulic system comprising a first hydraulic circuit for moving the piston-cylinder unit and a hydraulic force measuring device for determining a supporting force which acts on the support device, wherein the hydraulic force measuring device has a dedicated second hydraulic circuit that is independent from the first hydraulic circuit of the hydraulic system, at least during the determination of the supporting force.
Abstract:
A first substrate that includes pressure sensors which are disposed in plural around a reference point; an approximately hemispherical elastic protrusion that is positioned so that the center of the elastic protrusion is approximately disposed in a position which is overlapped with the reference point, and is elastically deformed by an external force; and a second substrate that is separated from the elastic protrusion and installed on a side which is opposite to the first substrate are provided. When the external force is applied, a predetermined calculation is performed by using a pressure value which is detected through each pressure sensor, and the direction and the intensity of the applied external force are obtained.
Abstract:
A hydrostatic force/displacement measuring device measures the force and displacement exerted by a rotating tire in soil/aggregate. The measuring device has a hydrostatic actuation assembly having a pressure plate at near surface depths of soil/aggregate to provide hydrostatic pressures in a liquid representative of force and displacement created by the downward forces exerted by a rotating tire in the soil/aggregate at the near surface depths. A hydrostatic hose transmits the hydrostatic pressure forces in the liquid to a surface manifold assembly. The surface manifold assembly receives the hydrostatic pressure forces and has a gauge providing visual readouts of the hydrostatic pressure forces representative of the downward forces. The surface manifold assembly also has an axially displaceable piston defining an interface chamber. The piston is connected to an electronic sensor to provide visual readouts representative of displacements caused by the downward force.
Abstract:
A pressure sensor includes: a supporting body which has an opening; a pressure detecting portion which includes a supporting film provided on the supporting body and having a diaphragm portion closing the opening, and a piezoelectric body provided on the diaphragm portion and deflecting to output an electric signal; a frame body which has, on the pressure detecting portion, a cylindrical cavity along a film thickness direction of the supporting film, and is formed, in plan view when viewed from the film thickness direction of the supporting film, at a position where a cylindrical inner peripheral wall of the cavity overlaps with the opening, or outside of the opening; a sealing film which closes the frame body; and a silicone oil which is filled in an inner space formed of the cylindrical inner peripheral wall of the cavity, the sealing film, and the pressure detecting portion.
Abstract:
A pressure sensor for measuring the location and intensity of an applied pressure, including an elastomeric sheet; and a plurality of micro-channels embedded in the elastomeric sheet.
Abstract:
An interface device for measuring a force applied by a user is disclosed. In one aspect, the interface device has a deformable body positioned on a support housing. In another aspect, the deformable body contains a fluid medium. The interface device also has at least one pressure sensor in fluid communication with the fluid medium. In an additional aspect, the interface device has processing circuitry for receiving pressure signals from the pressure sensors and producing an output signal corresponding to the force applied by the user.
Abstract:
A system and method for measuring contact pressures between two surfaces, and especially, between the body and a device resting on the body, e.g., the skin and a breathable gas mask. A deformable, resilient probe having a flow passage therein is initially placed between the two surfaces such that the flow passage is blocked. Fluid pressure within the probe is then increased until the pressure in the probe overcomes the contact pressure between the two surfaces, such that fluid begins to flow through the flow passage in the probe. The pressure at which the fluid begins to flow through the flow passage in the probe is recorded as the contact pressure between the two surfaces. Contact pressure maps created using this apparatus and method may be used to create anthropometric models of the face and other body parts.
Abstract:
A system and method for measuring contact pressures between two surfaces, and especially, between the body and a device resting on the body, e.g., the skin and a breathable gas mask. A deformable, resilient probe having a flow passage therein is initially placed between the two surfaces such that the flow passage is blocked. Fluid pressure within the probe is then increased until the pressure in the probe overcomes the contact pressure between the two surfaces, such that fluid begins to flow through the flow passage in the probe. The pressure at which the fluid begins to flow through the flow passage in the probe is recorded as the contact pressure between the two surfaces. Contact pressure maps created using this apparatus and method may be used to create anthropometric models of the face and other body parts.
Abstract:
A sensor for measuring a force is provided, which sensor includes a first sealed volume, a second sealed volume, a pressure diaphragm and a force diaphragm. The pressure diaphragm has a first side and a second side, with a pressure of the first sealed volume acting on the first side, and a pressure of the second sealed volume acting on the second side. The force diaphragm is exposed to a force, and the pressure of the first volume is dependent on the force acting on the force diaphragm.