Abstract:
Brushless motor is provided which includes an outer stator and an inner rotor having a plurality of permanent magnets. One or inner surface of the outer stator, opposed to the inner rotor, is covered with a cover formed of a magnetic material and in the shape of a cylinder of a small wall thickness. The magnetic cover has a plurality of slits inclined with respect to the rotational axis of the inner rotor. Magnetic portions formed or left between the slits of the cover are also inclined with respect to the rotational axis of the inner rotor. With such magnetic portions, boundaries between magnetic poles are virtually inclined with respect to the rotational axis of the inner rotor, so that undesired cogging torque of the motor can be minimized.
Abstract:
A magnetic pole for facing an air gap with a stator is formed with a parallel quadrilateral shape or a quadrilateral shape having a skew effect and is obtained by a single iron core or plural iron cores. To make simply a winding structure of a stator and a rotor of an alternating current rotary electric machine, by a bobbin structure a magnetic field formation of a magnetic pole portion is formed. A magnetic pole structure having a projection portion is provided to form an overlap structure with another phase magnetic pole. An electromagnetic combination of each phase is strengthened and each phase magnetic poles is carried out a systematic separation, dispersion, and an arrangement.
Abstract:
A permanent magnet electric motor for use in an elevator installation includes a stator and a rotor assembly. The rotor assembly has a frame on which are mounted at least two rings with permanent magnets. The rings are removably mounted and are laterally fixed together by a fastener that also radially aligns the rings. The number of similar rings used defines a rotor length in multiple values of the ring length. The rings can be shifted by a suitable magnetic angle to permit the generation of a skewing effect of the magnets which reduces or eliminates a cogging torque of the motor. The rotor assembly can be easily and quickly installed and/or removed in very small spaces, especially in elevator installations.
Abstract:
A brushless DC motor minimizes a chance of dislocation of or damage to an insulator used in the brushless DC motor. Slant portions are provided at end portions of the insulator; therefore, even if a nozzle of a machine for installing a winding should hit the insulator while moving between teeth, the insulator moves in a direction for coming in close contact with a slot aperture, i.e., in a direction substantially at right angles to a direction in which the nozzle moves. This arrangement prevents the insulator from moving by being pushed by the nozzle, making it possible to minimize a chance of occurrence of an insulation failure caused by a damaged or dislocated insulator.
Abstract:
An electric motor including a permanent-magnet rotor having embedded magnets held in place by several segments. The embedded magnets are secured by segments including non-circular openings near their centers. Several non-magnetic, non-conductive bars extend through the non-circular openings of the segments to secure the segments in relation to the shaft. The motor is capable of producing high torque while only requiring a minimum amount of space.
Abstract:
An electric motor including a permanent-magnet rotor having embedded magnets held in place by several segments. The embedded magnets are secured by segments including non-circular openings near their centers. Several non-magnetic, non-conductive bars extend through the non-circular openings of the segments to secure the segments in relation to the shaft. The motor is capable of producing high torque while only requiring a minimum amount of space.
Abstract:
A permanent magnet device includes a permanent magnet having north and south pole faces with a first pole piece positioned adjacent one pole face thereof and a second pole piece positioned adjacent the other pole face thereof so as to create at least two potential magnetic flux paths. A first control coil is positioned along one flux path and a second control coil is positioned along the other flux path, each coil being connected to a control circuit for controlling the energization thereof. The control coils may be energized in a variety of ways to achieved desirable motive and static devices, including linear reciprocating devices, linear motion devices, rotary motion devices and power conversion.
Abstract:
A stator core for a motor includes a plurality of laminations in a stacked formation one on another defining a generally circular inner periphery for receipt of a motor rotor. Each lamination defines an axis therethrough that is collinear with an axis of each lamination in the stacked formation. Each lamination is rotated about its axis relative to adjacent laminations a predetermined index angle. The laminations have first and second surfaces and are configured such that the core defines at least one inner lamination having laminations adjacent to both the first and second sides and outer laminations having laminations adjacent to one of the first and second sides. Each lamination has a predetermined number of circumferentially equally spaced slots extending radially inwardly from an inner edge of the lamination. The slots define conductor receiving regions therein. Each inner lamination includes at least one interlocking pair including a projection formed in one of the first and second surfaces at a predetermined radial distance from the axis. The projection extends generally transverse from a plane of the lamination. Each interlocking pair further defines a shadow formed therein that is at the same predetermined radial distance from the axis as is the projection. The shadow is spaced from the projection by an angle, .alpha., wherein each projection of a lamination is configured to reside within a shadow of a respective adjacent lamination when the laminations are in their stacked formation.
Abstract:
An electric motor including a stator having a stator core, a start winding and first and second main windings is described. The first main winding and the start winding are configured to form a lower number of poles than the second main windings. The stator core forms a stator bore. The motor also includes a rotor having a rotor shaft concentrically arranged axially of the stator core and a rotor core positioned concentrically with the rotor shaft. Secondary conductors are arranged axially of the rotor shaft and extend through the rotor core. A plurality of permanent magnets are located at an outer periphery of the rotor core and are magnetized to form a number of poles equal to the number of poles formed by the second main winding.
Abstract:
A permanent magnet motor rotor arrangement including a rotor core having radial and angular positioning surfaces provides for inexpensive and precise positional control of rotor components.