Abstract:
Apparatus for transceiving signals in accordance with a frame structure supportive of a plurality of carriers in a wireless communication system and method thereof are disclosed. The method includes transceiving the signal using at least one carrier in accordance with the frame structure supportive of the carriers. The frame structure includes the carriers. First carrier among the carriers includes a downlink static assignment region assigned statically for a user equipment to receive the signal from a base station, a downlink dynamic assigned region assigned in a manner of being flexibly changed and an uplink transmitting region for the user equipment to transmit an uplink signal. Second carrier among the carriers includes an uplink transmitting region for the user equipment to transmit the uplink signal. The first or second carrier includes an uplink static assignment region assigned statically for an uplink transmission of the user equipment.
Abstract:
The present invention relates to a method and an apparatus for reporting channel status information (CSI). According to one embodiment of the present invention, the method comprises receiving a first CSI-reference signal (CSI-RS) based on CSI-RS configuration information with respect to a first domain antenna group of a two-dimensional antenna structure; reporting a first piece of CSI with respect to the first domain antenna group, which is generated using the first CSI-RS; receiving a second CSI-RS, based on CSI-RS configuration information with respect to a second domain antenna group of the two-dimensional antenna structure; and reporting a second piece of CSI with respect to the second domain antenna group, which is generated using the second CSI-RS, wherein the CSI-RS configuration information with respect to the second domain antenna group can be determined based on the first piece of CSI.
Abstract:
In a method for a transmission point to transmit a downlink signal to a user equipment in a wireless communication system, the method includes determining transmission power of first resource elements for data transmission of an OFDM symbol which does not include a Cell specific Reference Signal (CRS) and transmission power of second resource elements for data transmission of an OFDM symbol which includes the CRS, wherein a first parameter related to the determination of the transmission power of the first resource elements and a second parameter related to the determination of the transmission power of the second resource elements are determined by one of a first configuration and a second configuration, and wherein the first configuration and the second configuration are selectively applied according to one or more of a subframe and a transmission mode.
Abstract:
The present invention relates to a method of transmitting downlink control information (DCI) for a low-cost machine type communication (MTC) used for a wireless access system, and apparatuses for supporting same. A method of receiving DCI for low-cost MTC equipment includes the steps of: receiving a signal including DCI format information about DCI; and receiving a physical downlink control channel (PDCCH) signal including the DCI by using the DCI formation information.
Abstract:
The present invention relates to various apparatuses and methods for encoding Channel State Information (CSI) and transmitting the encoded CSI in a wireless access system supporting a multi-cell or multi-carrier environment. The method for user equipment to transmit CSI about two or more cells in a wireless access system includes the steps of: generating CSI bits for two or more cells; encoding each CSI bit for the two or more cells; and periodically transmitting the encoded CSI bit using physical uplink control channel (PUCCH) format 3.
Abstract:
An embodiment of the present invention relates to a method of obtaining control information through an enhanced physical downlink control channel (E-PDCCH) by a terminal in a wireless communication system. The method includes performing blind decoding on a common searching space in a set of first resource blocks on a subframe; and performing blind decoding on a terminal-specific searching space in a set of second resource blocks on the subframe, wherein a first start orthogonal frequency division multiplexing (OFDM) symbol of an E-PDCCH resource region including the common searching space in the set of first resource blocks and a second start OFDM symbol of an E-PDCCH resource region including the terminal-specific searching space in the set of second resource blocks are set individually.
Abstract:
A method for transmitting a sounding reference signal from a user equipment in a MIMO antenna wireless communication system is disclosed. The method comprises receiving sounding reference signal setup information from a base station, the sounding reference signal setup information including an initial cyclic shift value nSRScs and an initial transmissionComb parameter value kTC; setting an interval between cyclic shift values corresponding to each antenna port based on the initial cyclic shift value, to reach a maximum interval; setting a transmissionComb parameter value corresponding to a specific one of the antenna ports to a value different from the initial transmissionComb parameter value if the initial cyclic shift value is a previously set value and the number of antenna ports is 4; and transmitting the sounding reference signal to the base station through each antenna port by using the set cyclic shift value and transmissionComb parameter value.
Abstract:
Various embodiments relate to a next generation wireless communication system for supporting a data transmission rate higher than that of a 4th generation (4G) wireless communication system. According to various embodiments, provided are a method for transmitting/receiving a signal in a wireless communication system, and an apparatus for supporting same, and various other embodiments can also be provided.
Abstract:
The present invention discloses a method for a user equipment to receive system information in a wireless communication system. Particularly, the method is characterized in detecting a first synchronization signal block configured with a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS) and a Physical Broadcasting Channel (PBCH) at a specific frequency position, determining a presence or non-presence of system information corresponding to the first synchronization signal block within a first synchronization raster corresponding to a specific frequency position based on a system information indicator included in the PBCH, and if the system information corresponding to the first synchronization signal block is determined as not existing, determining a second synchronization raster having system information exist therein based on the system information indicator.