Abstract:
A vessel includes a body that defines an interior space. The body includes a first metal surface, a second metal surface, and a non-metallic material crimped between the first metal surface and the second metal surface at a joint. The vessel further includes a pressure relief device coupled to the body. The pressure relief device is configured to vent contents of the vessel to an exterior of the body. Upon exposure of the vessel to a temperature for a period of time, the second metal surface is configured to expand or bend to create a pressure relief route from the interior space to the pressure relief device, between the first metal surface and the second metal surface, and/or the non-metallic material is configured to melt to create the pressure relief route.
Abstract:
A compressed gas storage system that includes a pressure vessel. The pressure vessel includes a first vessel portion and a second vessel portion in fluid communication with the first vessel portion. The pressure vessel includes a third vessel portion in fluid communication with the second vessel portion. The compressed gas storage system includes a first valve positioned between the first vessel portion and the second vessel portion and a second valve positioned between the second vessel portion and the third vessel portion. The first valve allows and impedes fluid flow between the first and the second vessel portions. The second valve allows and impedes fluid flow between the second and the third vessel portions.
Abstract:
An array of pressure vessels for storage of a compressed gas includes at least one Type 4 pressure vessel and at least one Type 1 pressure vessel. The Type 1 pressure vessel is in fluid communication with the at least one Type 4 pressure vessel. A metal wall of the at least one Type 1 pressure vessel has a Type 1 thermal conductance that is greater than a Type 4 thermal conductance of the at least one Type 4 pressure vessel.
Abstract:
A system for dispensing cryogenic liquid includes a container defining an interior with a partition dividing the interior into primary and reserve chambers. Cryogenic liquid within the primary chamber is separated from cryogenic liquid in the reserve chamber. The partition provides a headspace communication passage so that the headspaces of the primary and reserve chambers are in fluid communication with one another. A primary pressure building circuit has an inlet selectively in liquid communication with the primary chamber and an outlet in fluid communication with the headspaces of the primary and reserve chambers. A reserve pressure building circuit has an inlet selectively in liquid communication with the reserve chamber and an outlet in fluid communication with the headspaces of the primary and reserve chambers of the tank. An equalizing circuit is selectively in liquid communication with the primary and reserve chambers. A dispensing line is selectively in liquid communication with the primary chamber.