Abstract:
A system for administering a therapeutic agent to a subject; for administering a first pharmaceutically-acceptable taggant to the subject at least substantially concurrent with the therapeutic agent, the first pharmaceutically-acceptable taggant having a pharmacokinetic profile; and for administering a second pharmaceutically-acceptable taggant to the subject with the first pharmaceutically-acceptable taggant, the second pharmaceutically-acceptable taggant having a pharmacokinetic profile different from the pharmacokinetic profile of the first pharmaceutically-acceptable taggant.
Abstract:
A property of an insurance policy may be determined, at least in part, upon characteristics of a vehicle collision detection system. The characteristics may pertain to any capability, configuration, and/or operating state of the collision detection system (and/or vehicle). For example, a property of the insurance policy may be based upon whether the collision detection system is configured to take automatic collision avoidance actions in response to detecting a potential collision and/or whether the automatic collision avoidance actions can be overridden by the operator of the vehicle. The property of the insurance policy may be dynamic, and may be updated in response to changes to the collision detection system and/or the real-time operating state thereof. The coverage of particular events may be based upon characteristics of the collision detection system and/or vehicle at the time the event occurred.
Abstract:
A property of an insurance policy may be determined, at least in part, upon characteristics of a vehicle collision detection system. The characteristics may pertain to any capability, configuration, and/or operating state of the collision detection system (and/or vehicle). For example, a property of the insurance policy may be based upon whether the collision detection system is configured to take automatic collision avoidance actions in response to detecting a potential collision and/or whether the automatic collision avoidance actions can be overridden by the operator of the vehicle. The property of the insurance policy may be dynamic, and may be updated in response to changes to the collision detection system and/or the real-time operating state thereof. The coverage of particular events may be based upon characteristics of the collision detection system and/or vehicle at the time the event occurred.
Abstract:
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
Abstract:
Exemplary methods, systems and components enable an enhanced direct-viewing optical device to include customized adjustments that accommodate various optical aberrations of a current user. A real-time adjustment of transformable optical elements is sometimes based on predetermined corrective optical parameters associated with a current user. Customized optical elements are incorporated with the direct-viewing optical device to produce a specified change in optical wavefront at an exit pupil. Possible transformable or replacement optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are selected based on current performance viewing factors for a given field of view of the direct-viewing device. Some embodiments enable dynamic repositioning and/or transformation of corrective optical elements responsive to a detected shift of a tracked gaze direction of a current user. Replacement corrective optical elements may be fabricated for current usage or retained in inventory for possible future usage in the direct-viewing device.
Abstract:
A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
Abstract:
Systems and methods are described relating to accepting an indication of an inertial impact associated with at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on accepting the indication of the inertial impact associated with the at least one mobile device. Additionally, systems and methods are described relating to means for accepting an indication of an inertial impact associated with at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on accepting the indication of the inertial impact associated with the at least one mobile device.
Abstract:
Described embodiments include a system, method, and program product. A described system includes a circuit that determines a substantial correspondence between a human-perceivable feature included in a border region segment of a selected medical skin image and a human-perceivable feature included in each other medical skin image of a plurality of medical skin images. A circuit gathers the determined substantial correspondences. A circuit generates data indicative of a border region-overlap status of the selected medical skin image. A circuit adds the data to an omitted-coverage list. A circuit iteratively designates a next medical skin image as the selected digital image, and initiates a processing of each of the iteratively designated next medical skin images. A circuit identifies a possible non-imaged portion of the region of interest. A circuit outputs user-assistance information based on the identified possible non-imaged portion of the skin.
Abstract:
Embodiments disclosed herein are directed to systems configured to deliver energy out of a living subject to power at least one external device, and related apparatuses, and methods of use.