Abstract:
A transistor device formed on a semiconductor-on-insulator (SOI) substrate with a buried oxide (BOX) layer disposed thereon and an active layer disposed on the BOX layer having active regions defined by isolation trenches. The device includes a gate defining a channel interposed between a source and a drain formed within the active region of the SOI substrate. Further, the device includes a multi-thickness silicide layer formed on the main source and drain regions and source and drain extension regions wherein a portion of the multi-thickness silicide layer which is formed on the source and drain extension regions is thinner than a portion of the silicide layer which is formed on the main source and drain regions. The device further includes a second thin silicide layer formed on a polysilicon electrode of the gate.
Abstract:
The disclosure includes an exemplary embodiment which relates to a method of forming L-shaped spacers in an integrated circuit. This method can include providing a gate structure over a semiconductor substrate, depositing a spacer material adjacent lateral sides of the gate structure, forming dummy oxide spacer structures over the spacer material where the dummy oxide spacer structures are shaped to selectively cover an L-shaped portion of the spacer material, removing portions of the spacer material not covered by the dummy oxide spacer structures, and removing the dummy oxide spacer structures.
Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs on an SOI substrate. The MOSFETs include recessed source and drain regions. The recessed source and drain regions are formed utilizing an amorphous semiconductor layer. The recessed source and drain regions allow sufficient material for silicidation and yet allow an ultra thin channel region to be utilized. The channel region is above an insulative island.
Abstract:
For forming a field effect transistor on a buried insulating material in SOI (semiconductor on insulator) technology, a gate dielectric and a gate electrode are formed on the semiconductor material, and spacers are formed on sidewalls of the gate electrode and the gate dielectric. The spacers cover portions of the semiconductor material. A dopant is implanted into exposed regions of the semiconductor material to form a drain doped region and a source doped region. A portion of the drain doped region and a portion of the source doped region extend under the spacers. A drain contact silicide is formed with an exposed portion of the drain doped region, and a source contact silicide is formed with an exposed portion of the source doped region. The spacers are removed to expose the portions of the semiconductor material including a portion of the drain doped region and a portion of the source doped region. A drain extension silicide is formed with a first exposed portion of the semiconductor material disposed between the drain contact silicide and the gate dielectric, and with the portion of the drain doped region disposed by the drain contact silicide. A source extension silicide is formed with a second exposed portion of the semiconductor material disposed between the source contact silicide and the gate dielectric, and with the source doped region disposed by the source contact silicide. The drain and source extension silicides are formed to be thinner than the drain and source contact silicides.
Abstract:
For fabricating a field effect transistor on a semiconductor substrate in SOI (semiconductor on insulator) technology, an insulating block comprised of insulating material is formed on a thin semiconductor island comprised of semiconductor material. Semiconductor material is further grown from sidewalls of the semiconductor island to extend up along sidewalls of the insulating block to form a raised drain structure on a first side of the insulating block and the semiconductor island and to form a raised source structure on a second side of the insulating block and the semiconductor island. A drain and source dopant is implanted into the raised drain and source structures. A thermal anneal is performed to activate the drain and source dopant within the raised drain and source structures and such that the drain and source dopant extends partially into the semiconductor island. Drain and source silicides are formed within the raised drain and source structures. The insulating block is etched away to form a block opening. A gate dielectric comprised of a high dielectric constant material is deposited at a bottom wall of the block opening after the thermal anneal and after formation of the drain and source silicides. The block opening is filled with a conductive material to form a gate structure disposed over the semiconductor island. The portion of the semiconductor island disposed under the gate structure forms a channel region that is fully depleted during operation of the field effect transistor. In this manner, the gate dielectric comprised of the high dielectric constant material is formed after any process step using a relatively high temperature of greater than about 750° Celsius to preserve the integrity of the gate dielectric comprised of a high-K dielectric material.
Abstract:
A method for forming a double-gate SOI MOS transistor with a back gate formed by a laser thermal process is described. In this method, a back gate is formed in a semiconductor substrate and is subsequently amorphized by implanting an amorphization species such as germanium, silicon, and xenon. The amorphous back gate region is melted using a laser annealing process and subsequently recrystallized to form the back gate.
Abstract:
For fabricating a field effect transistor, a gate structure is formed on a gate dielectric on an active device area of a semiconductor substrate. An amorphization dopant and an extension dopant are implanted into exposed regions of the active device area to form drain and source extension junctions extending down to an extension depth within the semiconductor substrate. First and second spacers are formed at sidewalls of the gate structure. Any exposed regions of the active device area of the semiconductor substrate are etched down beyond the extension depth. The drain and source extension junctions remain disposed under the first and second spacers. A layer of doped amorphous semiconductor material is deposited to cover the structures on the semiconductor substrate and is doped with a contact dopant in an in-situ deposition process using a temperature of less than about 500° Celsius. The amorphous semiconductor material is polished down until the top surfaces of the gate structure and the first and second spacers are level with a top surface of the amorphous semiconductor material. The amorphous semiconductor material remaining to the first sidewall of the gate structure forms an elevated drain contact structure, and the amorphous semiconductor material remaining to the second sidewall of the gate structure forms an elevated source contact structure. A thermal anneal is performed using a temperature less than about 600° Celsius to activate the dopants within the drain and source extension junctions and within the drain and source contact structures. Such low temperatures preserve the gate dielectric comprised of a high-K dielectric material.
Abstract:
A low thermal budget method for making raised source/drain regions in a semiconductor device includes covering a silicon substrate and gate stacks with an amorphous silicon film, and then melting the film using a laser to crystallize the silicon. Subsequent dopant activation and silicidization are undertaken to render a raised source/drain structure while minimizing the thermal budget of the process.
Abstract:
For fabricating a field effect transistor in SOI (semiconductor on insulator) technology, an opening is etched through a first surface of a first semiconductor substrate, and a dielectric material is deposited to fill the opening. The dielectric material and the first surface of the first semiconductor substrate are polished down to form a dielectric island comprised of the dielectric material surrounded by the first surface of the first semiconductor substrate that is exposed. The semiconductor material of the first semiconductor substrate remains on the dielectric island toward a second surface of the first semiconductor substrate. A layer of dielectric material is deposited on a second semiconductor substrate. The first surface of the first semiconductor substrate is placed on the layer of dielectric material of the second semiconductor substrate such that the dielectric island and the first surface of the first semiconductor substrate are bonded to the layer of dielectric material. A drain extension region and a source extension region are formed by the drain and source dopant being implanted in the thinner semiconductor material disposed on the dielectric island. In addition, a drain contact region and a source contact region are formed by the drain and source dopant being implanted in the thicker semiconductor material of the first semiconductor substrate disposed to sides of the dielectric island.
Abstract:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a dual amorphization technique. The technique creates a shallow amorphous region and a deep amorphous region 300 nm thick. The shallow amorphous region can be between 10-40 nm below the top surface of the substrate, and the deep amorphous region can be between 150-200 nm below the top surface of the substrate. The process can reduce gate over-melting effects. The process can be utilized for P-channel or N-channel metal oxide semiconductor field effect transistors (MOSFETs).