摘要:
A thermal nitride film is formed as a gate insulating film on a silicon substrate, and after a gate electrode material is formed on the insulating film, it is patterned to form gate electrodes. After processing the electrodes, part of the gate insulating film other than a portion thereof which lies under the gate electrodes is removed. Further, an insulating film (a post oxidation film) is formed on side walls and upper surfaces of the stacked gate structures and the exposed main surface of the silicon substrate by use of thermal oxidation method.
摘要:
A semiconductor device and a method for constructing a semiconductor device is disclosed. A deep trench isolation structure (108) is formed proximate a surface of a semiconductor substrate (106). A deep trench plug (122) layer is deposited within the deep trench isolation structure (108). A shallow trench isolation structure (130) is formed where the deep trench isolation structure (108) meets the surface of the semiconductor substrate (106). A shallow trench plug layer (133) is deposited within the shallow trench isolation structure (130).
摘要:
A polycrystalline silicon layer is formed on a substrate. An insulating layer and a gate electrode are formed on the polycrystalline silicon layer. Then, a channel region, a source region and a drain region are formed in a self-aligned manner by doping an impurity in the polycrystalline silicon layer using the gate electrode as a mask. Then, an energy absorption layer is formed so as to cover the entire substrate and a pulsed laser beam is irradiated from the energy absorption layer side. The energy of the pulsed laser beam is almost completely absorbed in the energy absorption layer and a heat treatment is indirectly performed on the underlying layers by radiating the heat. In other words, activation of the impurity and removal of defects in the insulating layer are performed at the same time without damaging the substrate by the heat.
摘要:
A method of forming electrical contacts includes the step of implanting ions into a contact hole at an angle to create an enlarged plug enhancement region at the bottom of a contact hole. Thus, even if the contact hole is misaligned, over-sized, or over-etched, the enlarged plug enhancement region contains subsequently formed barrier layers and other conductive materials to reduce current leakage into the underlying substrate or into adjacent circuit elements.
摘要:
When a plasma is ignited in a plasma generator, an ion beam is made to run in the plasma generator, and in this state, a positive voltage with respective to ground is applied to a plasma production chamber from a DC power source. Secondary electrons are generated when the ion beam collides with a plasma generating gas which flows out of the plasma production chamber into a path of the ion beam. The secondary electrons are led into the plasma production chamber by the positive voltage, and within the plasma production chamber, a plasma ignition is triggered using the secondary electrons led into the plasma production chamber and a radio frequency.
摘要:
Different symmetrical and asymmetrical devices are formed on the same chip using non-critical block masks and angled implants. A barrier is selectively formed adjacent one side of a structure and this barrier blocks dopant implanted at an angle toward the structure. Other structures have no barrier or have two barriers. Source and drain engineering can be performed for LDD, halo, and other desired implants.
摘要:
A method for forming a hydrophilic surface on a silicon substrate during cleaning step after well implantation comprises providing a silicon substrate and an insulating layer is deposited thereon for mask alignment requirement. A photoresist layer is formed on the insulating layer and then a well pattern is transferred into the photoresist layer to expose partial the insulating layer thereunder the well defined. Next, implants are implanted into the photoresist layer, the insulating layer and the silicon substrate. Then the insulating layer exposed by the photoresist layer is removed and in-situ a native oxide is formed on the silicon substrate thereunder the well defined whereby changes the surface of the silicon substrate from hydrophobic into hydrophilic. A hard skin on the photoresist layer, resulting from implantation, is removed by oxygen plasma ashing and then the surface of the insulating layer and the silicon substrate are cleaned by conventional technologies.
摘要:
The method of fabricating a semiconductor device includes the steps of selectively forming an insulating oxide layer in a semiconductor substrate having a first conductivity type, wherein the semiconductor substrate has first and second regions; forming impurity layers having a second conductivity type in the first and second regions of the semiconductor substrate; forming a first mask layer in the second region of the semiconductor substrate; forming impurity layers having the second conductivity type in the first region of the semiconductor substrate by performing serial ion implantations with different doses of dopants at different acceleration energies; forming a second mask layer in the first region of the semiconductor substrate; and forming impurity layers having the first conductivity type in the second region of the semiconductor substrate by performing serial ion implantations with different doses of dopants at different acceleration energies.
摘要:
A semiconductor device having a retrograde channel profile is achieved by forming a retrograde impurity region in the surface portion of a semiconductor substrate, and subsequently forming a semiconductor layer on the retrograde impurity region at a predetermined thickness. The thickness of the semiconductor layer is controlled to localize the retrograde impurity region and its impurity concentration peak at a predetermined depth, thereby reducing the device's susceptibility to “reverse short channel effects.”
摘要:
A method of fabricating a MOSFET device with a multiple T-shaped gate has the following steps. A substrate with an active region and a non-active region is provided, wherein the active region has a plurality of trenches, and the non-active region has a plurality shallow trench isolation structures. A thin insulating layer and a conducting layer are formed in the trenches. The conducting layer is defined to form a gate. The device is implanted with first ions. Then, the device is further implanted with second ions by using a mask, wherein the mask expose the trenches of the active region, and the opening of the mask is wider than the trench. The MOSFET device has at least the following structures. There is a substrate with an active region and a non-active region, wherein the active region has a plurality of trenches and the non-active region has a plurality of shallow trench isolation structures. There is a multiple T-shaped gate with a first part and a second part, wherein the first part is formed between two trenches on the substrate and the second part is formed in the trenches of the active region. There is a source/drain region with a shallow doped region and a deep doped region. The multiple T-shaped gate increases the channel width of the MOSFET device and decreases the short channel effect of the high integrity ICs.