Abstract:
A truck hood actuator is provided which, operating via a gear rack and DC motor-powered traveler or pinion gear and ring gear, can operate more quickly than a hydraulic actuator, or a worm or screw gear actuator. Further, by employing the disclosed gear rack and traveler, the actuator of the present invention can be readily employed and installed as an after market accessory or as OEM equipment at a lower cost than a hydraulic or other, more complex, actuators.
Abstract:
A door hinge, in particular for domestic appliances, comprises a first element (5), a second element (6) and a lever (8) connecting the first and second elements (5, 6) to each other. The lever (8) is pivoted on the second element (6) and has a first portion (10) attached to the first element (5) to make the first and the second element (5, 6) reciprocally mobile about a horizontal axis. The second element (6) consists of a box-shaped body (7) housing elastic means (21) designed to act in conjunction with a second portion (22) of the lever (8) to control the reciprocal motion of the first and the second element (5, 6). The first element (5) and the lever (8) constitute a rocker lever (29) pivoted on the second element (6) and in which a first arm (11), defined by the first element (5), is designed to rotate, during the reciprocal motion of the first and the second element (5, 6), in a plane outside the box-shaped body (7) and parallel to the plane in which the second arm of the rocker lever (29) lies and about which it rotates, said second arm being defined by the second portion (22) of the lever (8).
Abstract:
A support mechanism supports a hood in a raised position with respect to a vehicle to which the hood is pivotally coupled. The mechanism includes two pairs of arm members which are pivotally coupled to each other by a central pivot pin, and which are coupled between the vehicle and the vehicle hood. A flat coil spring is coiled around the central pivot pin and is attached to the arm members. The spring is biased to pivot one pair of arms and in turn the hood upwardly.
Abstract:
Drive system for moving a load along a curved path. The drive system includes a base for mounting the drive system, the base having a curved track for guiding the load along the curved path. There is a load engaging mechanism mounted on the base for movement relative to the base, the load engaging mechanism being for moving the load. The load engaging mechanism has a curved track engaging roller for engaging the curved track. A linear drive mechanism including a linearly driven member is mounted on the base. The linearly driven member includes a driving pivot. A drive link is attached to the driving pivot at a drive force receiving end of the drive link, the drive link including a driven pivot at a drive force communicating end of the drive link. The driven pivot is attached to the load engaging mechanism, whereby linear motion of the driving pivot causes motion of the load along the curved path.
Abstract:
A power liftgate assembly is disclosed for moving a liftgate between an open position and a closed position. The liftgate is secured to a motor vehicle having a roof. The power liftgate assembly includes an elongated bracket that is fixedly secured to the roof of the motor vehicle. The elongated bracket extends between first and second ends. A motor is fixedly secured to the elongated bracket. A slide operatively engages the motor. The slide moves along the elongated bracket. An articulated bracket is connected to the slide and moves with the slide. The articulated bracket includes a slot that extends therealong to provide lost motion between the articulated bracket and the slide. An arcuate bracket extends between the articulated bracket and the liftgate for receiving the motion of the articulated bracket and for moving the liftgate in response thereto.
Abstract:
A closure sequence controller for a double door arrangement in which the double door arrangement is provided with a first door closer and a first pull arm for closing a first door leaf and with a second door closer and a second pull arm for closing a second door leaf. A guide rail guides the distal ends of the pull arms relative to the door closers. The closure sequence controller includes a connection piece for transmitting a pulling force from the distal end of the first pull arm to the closure sequence controller. The closure sequence controller prevents movement of the distal end of the second pull arm in the guide rail past the closure sequence controller until the distal end of the first pull arm has exerted the pulling force on the closure sequence controller through the connection piece.
Abstract:
A swivel-sliding door system for a vehicle having at least one door leaf situated in the vehicle wall in the closed state, and situated on the outside in front of the vehicle wall in the open state while leaving a door opening free. A drive as well as transverse and longitudinal guides are provided which enable a movement at the at least one door leaf transverse relative to the vehicle wall and along the vehicle wall, wherein the drive and the transverse and longitudinal guides are combined into one complete operating unit that can be mounted as one whole in the vehicle and be coupled to the at least one door leaf. The operating unit comprises a frame which, in assembled condition, is fixedly connected to the vehicle and an assembly which is movably provided in the frame and which comprises a drive motor for the door leaf movements. The frame may include a girder extending along the door opening and end flanges provided at the ends of the girder, wherein the movable assembly is movable along the end flanges, transversely to the vehicle wall and the girder, for executing a plug movement and wherein the drive motor effects both the plug movement and the longitudinal movement of the at least one door leaf along the vehicle wall.
Abstract:
A mechanism for self-latching access doors of a safety cabinet following sequential self-closing of the doors. Latching takes place between the doors and at a top and bottom frame of the cabinet. A latching arm and two actuating arms extend from a bellcrank which is biased toward a latched position. An interference bar prevents rotation of the bellcrank to the latched position when the doors are open. Upon sequential self-closing of the doors an actuating means slides the interference bar to a position of non-interference with the bellcrank which enables the self-latching action to take place.
Abstract:
An internal entrapment system (10) for a door (12) movable by a repeatable force includes a force generating device (68) for transferring the door (12) between a first and a second position. A trolley arm (34) connected between the force generating device (68) and the door (12) is continually strained during movement of the door (12). A sensor (50) mounted on the trolley arm (34) generates a signal (54) representative of the strain applied to the trolley arm (34). A processor (72) receives the strain signal (54) for comparison to a predetermined threshold, when the strain signal (54) exceeds the predetermined threshold, the processor (72) at least stops the force generating device (68). A potentiometer (74) is coupled to the door (12) for determining a plurality of positional locations of the door (12) between the first and the second positions, wherein the processor (72) correlates the position of the door (12) with the strain signal (54) for use in comparison to the predetermined threshold. A power supply (64) provides electrical power to the force generating device (68), the sensor (50), the processor (72), and the potentiometer (74), and a decoder/amplifier circuit (70), which also receives electrical power from the power supply (64) and receives the strain signal (54) for conversion into a format acceptable for use by the processor (72).
Abstract:
A bracket assembly for an overhead door including a first portion having a first base and at least two first portion rails having a plurality of openings. At least two arm attachment projections extending outwardly from the first base substantially parallel to the rails each including an opening. The assembly further including a second portion having a second base and at least two second portion rails having a plurality of openings. The second portion also includes at least two pivot pin receiving projections each having at least one opening. A third portion of the bracket assembly includes a third base having at least two third portion projections having at least one opening. The third portion can be attached to the second portion by a pivot pin.