Abstract:
An MOSFET device having a Silicide layer of uniform thickness, and methods for its fabrication, are provided. One such method involves depositing a metal layer over wide and narrow contact trenches on the surface of a silicon semiconductor substrate. Upon formation of a uniformly thin amorphous intermixed alloy layer at the metal/silicon interface, the excess (unreacted) metal is removed. The device is annealed to facilitate the formation of a thin silicide layer on the substrate surface which exhibits uniform thickness at the bottoms of both wide and narrow contact trenches.
Abstract:
A data security appliance intercepts out-of-band control traffic directed to a data storage device, wherein the out-of-band control traffic includes a command to change a configuration of the data storage device. The data security appliance is reconfigured in accordance with the command in order to conform with a new configuration of the data storage device.
Abstract:
Disclosed is a semiconductor device having a p-n junction with reduced junction leakage in the presence of metal silicide defects that extend to the junction and a method of forming the device. Specifically, a semiconductor layer having a p-n junction is formed. A metal silicide layer is formed on the semiconductor layer and a dopant is implanted into the metal silicide layer. An anneal process is performed causing the dopant to migrate toward the metal silicide-semiconductor layer interface such that the peak concentration of the dopant will be within a portion of the metal silicide layer bordering the metal silicide-semiconductor layer interface and encompassing the defects. As a result, the silicide to silicon contact is effectively engineered to increase the Schottky barrier height at the defect, which in turn drastically reduces any leakage that would otherwise occur, when the p-n junction is in reverse polarity.
Abstract:
A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
Abstract:
An LED lamp includes an envelope, two covers, a mounting board and a plurality of LEDs. The covers engages with opposite ends of the envelope. Each of the covers has an electrically conductive part. The mounting board is received in the envelope. Two ends of the mounting board electrically connect with the electrically conductive parts of the two covers, respectively. The LEDs are disposed on the mounting board and received in the envelope.
Abstract:
A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
Abstract:
A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
Abstract:
A double-effective vaccine vector against foot-and-mouth disease virus having a bicistronic expression vector sequence, the bicistronic expression vector sequence is an antisense gene sequence capable of conjugating with 5′ UTR of RNA of the foot-and-mouth disease virus genome and an intact sequence of VP1 structural protein gene of the foot-and-mouth disease virus. Animal experiments show that the vaccine vector provides double effects in terms of gene therapy and gene immunization for the prevention and treatment of foot-and-mouth disease in animals. Also provided are construction methods and methods of use of the vaccine vector.
Abstract:
Glucagon antagonists are provided which comprise amino acid substitutions and/or chemical modifications to glucagon sequence. In one embodiment, the glucagon antagonists comprise a native glucagon peptide that has been modified by the deletion of the first two to five amino acid residues from the N-terminus and (i) an amino acid substitution at position 9 (according to the numbering of native glucagon) or (ii) substitution of the Phe at position 6 (according to the numbering of native glucagon) with phenyl lactic acid (PLA). In another embodiment, the glucagon antagonists comprise the structure A-B-C as described herein, wherein A is PLA, an oxy derivative thereof, or a peptide of 2-6 amino acids in which two consecutive amino acids of the peptide are linked via an ester or ether bond.
Abstract:
Disclosed is a semiconductor device having a p-n junction with reduced junction leakage in the presence of metal silicide defects that extend to the junction and a method of forming the device. Specifically, a semiconductor layer having a p-n junction is formed. A metal silicide layer is formed on the semiconductor layer and a dopant is implanted into the metal silicide layer. An anneal process is performed causing the dopant to migrate toward the metal silicide-semiconductor layer interface such that the peak concentration of the dopant will be within a portion of the metal silicide layer bordering the metal silicide-semiconductor layer interface and encompassing the defects. As a result, the silicide to silicon contact is effectively engineered to increase the Schottky barrier height at the defect, which in turn drastically reduces any leakage that would otherwise occur, when the p-n junction is in reverse polarity.