Abstract:
An integrated circuit includes combinational logic with flip-flops, parallel scan paths with a scan input for receiving test stimulus data to be applied to the combinational logic, combinational connections with the combinational logic for applying stimulus data to the combinational logic and receiving response data from the combinational logic, a scan output for transmitting test response data obtained from the combinational logic, and control inputs having an enable input and a select input for operating the parallel scan paths, each scan path includes flip-flops of the combinational logic that, in a test mode, are connected in series, compare circuitry indicates the result of a comparison of the received test response data and the expected data at a fail flag output, and one of the scan paths includes a scan cell having an input coupled to the fail flag output.
Abstract:
In a first embodiment a TAP 318 of IEEE standard 1149.1 is allowed to commandeer control from a WSP 202 of IEEE standard P1500 such that the P1500 architecture, normally controlled by the WSP, is rendered controllable by the TAP. In a second embodiment (1) the TAP and WSP based architectures are merged together such that the sharing of the previously described architectural elements are possible, and (2) the TAP and WSP test interfaces are merged into a single optimized test interface that is operable to perform all operations of each separate test interface.
Abstract:
An integrated circuit includes combinational logic with flip-flops, parallel scan paths with a scan input for receiving test stimulus data to be applied to the combinational logic, combinational connections with the combinational logic for applying stimulus data to the combinational logic and receiving response data from the combinational logic, a scan output for transmitting test response data obtained from the combinational logic, and control inputs having an enable input and a select input for operating the parallel scan paths, each scan path includes flip-flops of the combinational logic that, in a test mode, are connected in series, compare circuitry indicates the result of a comparison of the received test response data and the expected data at a fail flag output, and one of the scan paths includes a scan cell having an input coupled to the fail flag output.
Abstract:
This disclosure describes a test architecture that supports a common approach to testing individual die and dies in a 3D stack arrangement. The test architecture uses an improved TAP design to facilitate the testing of parallel test circuits within the die.
Abstract:
The disclosure describes novel methods and apparatuses for accessing test compression architectures (TCA) in a device using either a parallel or serial access technique. The serial access technique may be controlled by a device tester or by a JTAG controller. Further the disclosure provides an approach to access the TCA of a device when the device exists in a daisy-chain arrangement with other devices, such as in a customer's system. Additional embodiments are also provided and described in the disclosure.
Abstract:
An integrated circuit has controller circuitry having coupled to a test clock and a test mode select inputs, and having state a register clock state output, a register capture state output, and a register update state output. Register circuitry has a test data in lead input, control inputs coupled to the state outputs of the controller circuitry, and a control output. Connection circuitry has a control input connected to the control output of the register circuitry and selectively couples one of a first serial data output of first scan circuitry and a second serial data output of second scan circuitry to a test data out lead. Selection circuitry has an input connected to the serial data input lead, an input connected to a test pattern source lead, a control input coupled to the scan circuitry control output leads, and an output connected to the scan input lead.
Abstract:
The disclosure describes a novel method and apparatus for improving interposers that connected stacked die assemblies to system substrates. The improvement includes the addition of IEEE 1149.1 circuitry within interposers to allow simplifying interconnect testing of digital and analog signal connections between the interposer and system substrate it is attached too. The improvement also includes the additional 1149.1 controlled circuitry that allows real time monitoring of voltage supply and ground buses in the interposer. The improvement also includes the additional of 1149.1 controlled circuitry that allows real time monitoring of functional digital and analog input and output signals in the interposer. The improvement also provides the ability to selectively serially link the 1149.1 circuitry in the interposer with 1149.1 circuitry in the die of the stack.
Abstract:
The disclosure describes novel methods and apparatuses for accessing test compression architectures (TCA) in a device using either a parallel or serial access technique. The serial access technique may be controlled by a device tester or by a JTAG controller. Further the disclosure provides an approach to access the TCA of a device when the device exists in a daisy-chain arrangement with other devices, such as in a customer's system. Additional embodiments are also provided and described in the disclosure.
Abstract:
A Propagation Test instruction, a Decay Test instruction and a Cycle Test instruction provide testing of DC and AC interconnect circuits between circuits including JTAG boundary scan cells. A few additions to the Test Access Port circuitry, including gating producing a Capture Test Strobe (CTS) signal, and the boundary scan cells are required to implement the additional instructions. The instructions are extensions of the conventional JTAG operating structure.
Abstract:
The disclosure describes a novel method and apparatus for allowing response data output from the scan outputs of a circuit under test to be formatted and applied as stimulus data input to the scan inputs of the circuit under test. Also the disclosure described a novel method and apparatus for allowing the response data output from the scan outputs of a circuit under test to be formatted and used as expected data to compare against the response data output from the circuit under test. Additional embodiments are also provided and described in the disclosure.