Plasmonic electric-field concentrator arrays and systems for performing raman spectroscopy
    251.
    发明授权
    Plasmonic electric-field concentrator arrays and systems for performing raman spectroscopy 失效
    等离子体电场集中器阵列和用于执行拉曼光谱的系统

    公开(公告)号:US07995201B2

    公开(公告)日:2011-08-09

    申请号:US12287549

    申请日:2008-10-10

    CPC classification number: G01N21/658

    Abstract: Various embodiments of the present invention relate to plasmonic electric-field concentrators and to systems incorporating the plasmonic electric-field concentrators to perform Raman spectroscopy. In one aspect, a plasmonic electric-field concentrator comprises two or more large features, and a relatively small feature similar in shape to large features positioned adjacent to the two or more large features. The features are arranged so that when light of an appropriate wavelength is incident on the features, surface plasmon polaritons form on the outer surfaces of the features. The surface plasmon polaritons have associated electric fields extending perpendicular to the surfaces of the features. The electric fields are concentrated in the space between features forming an electric field hot spot that enhances Raman scattered light emitted from an analyte proximate to or absorbed on the features.

    Abstract translation: 本发明的各种实施例涉及等离子体电场集中器以及结合等离子体激元集中器以执行拉曼光谱的系统。 一方面,等离子体电场集中器包括两个或更多个大特征,以及与形状相邻的相对较小的特征,其尺寸与两个或更多个特征邻近的大特征相似。 特征被布置成使得当适当波长的光入射到特征上时,在特征的外表面上形成表面等离子体激元。 表面等离子体激元极化子具有垂直于特征表面延伸的相关电场。 电场集中在形成电场热点的特征之间的空间中,其增强了从附近或被吸收在特征上的分析物发射的拉曼散射光。

    Method of Positioning Catalyst Nanoparticle and Nanowire-Based Device Employing Same
    254.
    发明申请
    Method of Positioning Catalyst Nanoparticle and Nanowire-Based Device Employing Same 失效
    定位催化剂纳米颗粒和基于纳米线的装置使用方法

    公开(公告)号:US20100109101A1

    公开(公告)日:2010-05-06

    申请号:US11742310

    申请日:2007-04-30

    Abstract: A method of positioning a catalyst nanoparticle that facilitates nanowire growth for nanowire-based device fabrication employs a structure having a vertical sidewall formed on a substrate. The methods include forming the structure, forming a targeted region in a surface of either the structure or the substrate, and forming a catalyst nanoparticle in the targeted region using one of a variety of techniques. The techniques control the position of the catalyst nanoparticle for subsequent nanowire growth. A resonant sensor system includes a nanowire-based resonant sensor and means for accessing the nanowire. The sensor includes an electrode and a nanowire resonator. The electrode is electrically isolated from the substrate. One or more of the substrate is electrically conductive, the nanowire resonator is electrically conductive, and the sensor further comprises another electrode. The nanowire resonator responds to an environmental change by displaying a change in oscillatory behavior.

    Abstract translation: 定位促进用于纳米线的器件制造的纳米线生长的催化剂纳米颗粒的方法采用具有形成在衬底上的垂直侧壁的结构。 所述方法包括形成结构,在结构或基底的表面中形成目标区域,并使用各种技术之一在目标区域中形成催化剂纳米颗粒。 该技术控制催化剂纳米颗粒在随后的纳米线生长中的位置。 谐振传感器系统包括基于纳米线的谐振传感器和用于访问纳米线的装置。 传感器包括电极和纳米线谐振器。 电极与衬底电隔离。 衬底中的一个或多个是导电的,纳米线谐振器是导电的,并且传感器还包括另一个电极。 纳米线谐振器通过显示振荡行为的变化来响应环境变化。

    Photonic device including at least one electromagnetic resonator operably coupled to a state-change material
    256.
    发明授权
    Photonic device including at least one electromagnetic resonator operably coupled to a state-change material 有权
    光子器件包括可操作地耦合到状态变化材料的至少一个电磁谐振器

    公开(公告)号:US07446929B1

    公开(公告)日:2008-11-04

    申请号:US11796085

    申请日:2007-04-25

    CPC classification number: G02F1/3515 G02F1/0009 G02F2203/13 G02F2203/15

    Abstract: Various aspects of the present invention are directed to photonic devices configured to control transmission of electromagnetic radiation through a resonator structure. In one aspect of the present invention, a photonic device includes at least one electromagnetic resonator and a state-change material operably coupled to the at least one electromagnetic resonator. The state-change material is capable of being reversibly transitioned between a high-resistivity state and a low-resistivity state, with a ratio of the resistivity of the high-resistivity state to the resistivity of the low-resistivity state being at least about 100. Transmission of electromagnetic radiation through the at least one electromagnetic resonator at an operational frequency is controllable by transitioning the state-change material between the high-resistivity state and the low-resistivity state. Methods for controlling transmission of a signal are also disclosed.

    Abstract translation: 本发明的各个方面涉及被配置为控制通过谐振器结构的电磁辐射的传输的光子器件。 在本发明的一个方面,光子器件包括至少一个电磁谐振器和可操作地耦合到至少一个电磁谐振器的状态变化材料。 状态变化材料能够在高电阻率状态和低电阻率状态之间可逆地转变,高电阻率状态的电阻率与低电阻率状态的电阻率的比率至少为约100 通过在高电阻率状态和低电阻率状态之间转变状态变化材料来控制以工作频率通过至少一个电磁谐振器的电磁辐射的传输。 还公开了用于控制信号传输的方法。

    Light-amplifying structures and methods for surface-enhanced Raman spectroscopy
    257.
    发明授权
    Light-amplifying structures and methods for surface-enhanced Raman spectroscopy 有权
    用于表面增强拉曼光谱的光放大结构和方法

    公开(公告)号:US07339666B2

    公开(公告)日:2008-03-04

    申请号:US10942079

    申请日:2004-09-14

    CPC classification number: G01N21/658

    Abstract: Structures for amplifying light include a resonant cavity in which an analyte may be positioned. The structures for amplifying light may be used to amplify the incident light employed in surface enhanced Raman spectroscopy (SERS). SERS systems employing the structures for amplifying light of the present invention and methods of performing SERS are also disclosed.

    Abstract translation: 用于放大光的结构包括其中可以定位分析物的谐振腔。 用于放大光的结构可以用于放大表面增强拉曼光谱(SERS)中使用的入射光。 还公开了采用本发明的光放大结构的SERS系统和执行SERS的方法。

    Nano optical sensors via molecular self-assembly
    258.
    发明授权
    Nano optical sensors via molecular self-assembly 失效
    纳米光学传感器通过分子自组装

    公开(公告)号:US07294526B2

    公开(公告)日:2007-11-13

    申请号:US10917751

    申请日:2004-08-12

    Abstract: An optical sensor is provided, comprising (a) a silicon nanowire of finite length having an electrical contact pad at each end thereof; and (b) a plurality of self-assembled molecules on a surface of the silicon nanowire, the molecules serving to modulate electrical conductivity of the silicon nanowire by either a reversible change in dipole moment of the molecules or by a reversible molecule-assisted electron/energy transfer from the molecules onto the silicon nanowire. Further, a method of making the optical sensor is provided. The concept of molecular self-assembly is applied in attaching functional molecules onto silicon nanowire surfaces, and the requirement of molecule modification (hydroxy group in molecules) is minimal from the point view of synthetic difficulty and compatibility. Self-assembly will produce well-ordered ultra-thin films with strong chemical bonding on a surface that cannot be easily achieved by other conventional methods.

    Abstract translation: 提供了一种光学传感器,其包括(a)有限长度的硅纳米线,其每端具有电接触焊盘; 和(b)在硅纳米线的表面上的多个自组装分子,所述分子用于通过分子的偶极矩的可逆变化或通过可逆分子辅助电子/分子调制硅纳米线的导电性, 能量从分子转移到硅纳米线上。 此外,提供了制造光学传感器的方法。 分子自组装的概念应用于将功能分子附着在硅纳米线表面上,从合成难度和相容性的观点来看,分子修饰(分子中的羟基)的要求是最小的。 自组装将产生在表面上具有强化学键合的良好有序的超薄膜,其不能通过其它常规方法实现。

    Nano-enhanced raman spectroscopy substrate packaging structure
    260.
    发明申请
    Nano-enhanced raman spectroscopy substrate packaging structure 有权
    纳米增强型拉曼光谱基片包装结构

    公开(公告)号:US20070254377A1

    公开(公告)日:2007-11-01

    申请号:US11413516

    申请日:2006-04-28

    CPC classification number: G01N21/658 Y10T428/218 Y10T428/28

    Abstract: Packaged NERS-active structures are disclosed that include a NERS substrate having a NERS-active structure thereon, and a packaging substrate over the NERS substrate having an opening therethrough, the opening in alignment with the NERS-active structure. A membrane may cover the opening in the packaging substrate. In order to perform nanoenhanced Raman spectroscopy, the membrane may be removed, and an analyte placed on the NERS substrate adjacent the NERS-active structure. The membrane may be replaced with another membrane after the analyte has been placed on the substrate. The membrane may maintain the pristine state of the substrate before it is deployed, and the replacement membrane may preserve the substrate and analyte for archival purposes. Also disclosed are methods for performing NERS with packaged NERS-active structures.

    Abstract translation: 公开了封装的NERS-活性结构,其包括其上具有NERS-活性结构的NERS衬底和在NERS衬底上的具有穿过其中的开口的封装衬底,该开口与NERS-活性结构对准。 膜可以覆盖封装衬底中的开口。 为了进行纳米增强拉曼光谱,可以去除膜,并将分析物放置在邻近NERS-活性结构的NERS衬底上。 在将分析物放置在基底上之后,膜可以用另一膜替代。 膜可以在其被部署之前保持基材的原始状态,并且替换膜可以保留底物和分析物用于归档目的。 还公开了使用封装的NERS-活性结构来执行NERS的方法。

Patent Agency Ranking