Abstract:
There is provided a safety valve to release excess pressure from a portable gas container for the prevention of an explosion, wherein, when the internal pressure of a portable butane gas container increases over certain level, the safety valve instantaneously operates to release the excess pressure gas from the container at once through an excess pressure gas outlet, thereby sufficiently lowering the pressure inside the container to prevent the container from explodingThe safety valve comprises: a safety valve housing with first and second diameter portions integrally formed in a cylindrical shape, the first and second diameter portions being different from each other in diameter; a shaft with a body, a top projection formed on a top of the body, a gas outflow portion and a gasket locking portion formed at a lower part of the body, the shaft positioned inside the safety valve housing; a stopper with a lower part being open, an upper part being closed except for a center where a through-hole is vertically formed, and a side wall vertically formed along the edge of the upper part to provide a space where the gas releases, wherein the stopper is positioned so that the through-hole receives the top projection and the outer circumferential surface of the side wall is secured to the inner circumferential surface of the first diameter portion of the safety valve housing; a spring fitted around the body of the shaft and positioned between the gas outflow portion of the shaft and the stopper; and a first gasket positioned between the first diameter portion of the safety valve housing and an excess pressure gas outlet 13 of the mounting cup; and a second gasket positioned to be received around the gasket locking portion 323 formed at the lower part of the shaft, so that an upper part of the second gasket is secured to a lower part of the gas outflow portion.
Abstract:
The present invention relates to a pressure vessel (1) for a high pressure press, wherein the pressure vessel comprising a first sub-cylinder (4), a second sub-cylinder (6), pre-stressing means (8), and a securing member (16). The first and the second sub-cylinders (4, 6) are axially connected to form a cylinder body (2) for enclosing a high pressure medium. The first sub-cylinder (4) is in an outer wall provided with a first seat (22) for receiving a first part (24) of the securing member (16) and the second sub-cylinder (6) is in an outer wall provided with a second seat (26) for receiving a second part (28) of the securing member (16). The securing member (16) is fitted in the first and second seats (22, 26). The securing member (16), and the first and second scats (22, 26) are arranged such that the securing member (16), and the first and second scats (22, 26) cooperate to prevent separating axial movement between the first and the second sub-cylinders (4, 6). The pre-stressing means (8) is provided around the envelope surface of the cylinder body (2) such that the cylinder body (2) is radially pre-stressed and such that the securing member (16) is locked in the first and second seats (22, 26).
Abstract:
An exemplary embodiment of a combination valve assembly comprises a valve housing, an overpressure vent valve, a fill valve and a movable liquid overfill seal. The valve housing includes a longitudinal axis. The overpressure vent valve relieves excess pressure from the tank to which the assembly is affixed. The fill valve includes a fill valve pin actuatable between an open and closed configuration. The overfill seal is movable between a fluid sealing position and a fluid releasing position, and is elastically biased toward its fluid sealing position. In its fluid sealing position, the overfill seal prevents liquid from escaping the tank through the dip tube and outward of the valve assembly. Actuation of the fill valve pin toward its open position and movement of the overfill seal toward its fluid releasing position are preferably configured to both occur in the same direction, which is substantially parallel to the longitudinal axis.
Abstract:
The present invention relates to a pressure delivery system for delivering a gas. The pressure delivery system comprises a gas cylinder containing at least one gas, the gas cylinder comprising an outlet, and the gas in the gas cylinder having a first gas pressure. The system further comprising a pressure reduction valve positioned downstream of the outlet for reducing the first gas pressure to a second gas pressure. Furthermore, the invention relates to a dispensing system for dispensing beverages.
Abstract:
A storage system, including an outer casing having an evacuated inner volume; a vessel for storage located within the outer casing and having a plurality of protrusions distributed on an outer surface thereof; and a plurality of filamentary strands spanning the inner volume, wherein at least some of the plurality of protrusions are essentially tangentially contacted by a plurality of the filamentary strands to secure the vessel in six degrees of freedom relative to the outer casing.
Abstract:
A method and apparatus for fueling the onboard storage tank of a vehicle with liquefied natural gas. A liquid cryogen such as liquid nitrogen is fed to a condensing unit to condense natural gas present in a fueling system. Liquefied natural gas is fed into the fueling system and natural gas vapor is recovered from the onboard storage tank of the vehicle and fed to the condensing unit. When the pressure of the onboard storage tanks is sufficient, the liquefied natural gas is fed from the fueling system to the onboard storage tanks.
Abstract:
An article is provided that can be used as a heating source for various applications. The article includes an environmentally friendly gaseous fuel mixture within a gas cylinder that is both non-corrosive and refillable. More specifically, the gaseous fuel mixture contains hydrogen and methane. Methods of using the article as a heating source are also provided.
Abstract:
A pressure relief system for depressurizing a bottled pressure vessel. In one embodiment, the system includes a pressure relief device having a hollow outer member coupled to a fluid port in the vessel and an inner member at least partially disposed in and movably supported by the outer member. The system may further include a rupture disk disposed in the port between the vessel interior and exterior. In operation, the outer member remains stationary while the inner member is advanceable therein towards the pressure vessel. In one embodiment, the inner member includes a piercing element which is projectable to penetrate the rupture disk and into the vessel interior through material deposits that may obstruct the fluid port thereby releasing captive pressure in the vessel.
Abstract:
The invention relates to a pressure vessel (10) for gases, in particular helium, which is characterized in that the pressure vessel has an outer casing having pressure resistance up to an internal gas pressure of at least 10 bar, in that the outer casing of the pressure vessel has at least one highly diffusion-resistant barrier layer having a leak rate for helium at an internal gas pressure of 10 bar and room temperature of preferably less than 10−2 mbar·l/s, and in that the vessel has an accommodating volume for gas at atmospheric pressure of at least 25 liters. The outer casing of the pressure vessel can comprise at least one barrier layer made of a flexible polymer film having a high barrier function or ultra barrier function or at least one highly gas-tight flexible barrier layer made of EVOH. The vessel can be bag-like or, in particular at higher pressures, inherently rigid. High-strength plastics made of fiber granular materials, for example, can be used to produce the layer, which guarantees the high pressure resistance. Seams (12) can be provided, for example in the lateral edge areas, in order to reinforce and stabilize the pressure vessel. The pressure vessel (10) according to the invention can have a ball valve (11) as a closing element in order to remove the gas.
Abstract:
An adapter structure for a gas fuel bottle cooperates with a bottle and is connected with a power tool. The adapter structure contains a body connecting with the bottle, a gas sealing assembly fixed inside the body, a fixing member cooperating with a spherical connecting portion of the power tool, and a plurality of elastic retaining members secured on the fixing member. Each elastic retaining member forms an elastic spreading mouth, and a diameter of the elastic spreading mouth is normally smaller than that of the spherical connecting portion, the elastic spreading mouth is pressed to expand so that the spherical connecting portion slides into or disengages from the opening. Each of the elastic retaining members is separated from the fixing member, whereby the adapter structure benefits easy die sinking and assembly.