Abstract:
A laminated core 10 including a plurality of laminated iron core pieces, each of the iron core pieces being connected in a laminating direction by filling resin in a plurality of resin holes penetrating the laminated core 10 in the laminating direction, and a method for manufacturing the laminated core 10, by making a junction area of an iron core piece (A) 13 and resin larger than a junction area of an iron core piece (U) 14 and resin, the iron core piece (A) 13 being provided on an end in an axial direction, the iron core pieces (U) 14 being arranged at positions other than the end in the axial direction, or by providing locking portions at tip portions of resin, acquired joint strength of the iron core piece (A) 13.
Abstract:
A thin spindle motor having a stator core with sufficient swaging strength even using thin magnetic steel sheets is provided, whereby the magnetic loss and the power consumption of the spindle motor are reduced. The stator core is formed by laminating plural stator laminations with a thickness of 0.1 to 0.2 mm and joined by a swaging portion. The swaging portion has an approximately rectangular shape having long sides extending along a radial direction when viewed from an axial direction. The swaging portion has a cross section with a middle portion parallel to the radial direction and a slope portion at the both sides when viewed from a circumferential direction, thereby forming a recess. The recess has a depth that is less than the thickness of the stator lamination whereby the swaging portion does not cut the stator lamination.
Abstract:
A rotor blade set for an electric motor, having a plurality of axially assembled multi-part and/or single-part blades having circle segment shaped blade sections, between which radial and circumferentially open recesses are formed for receiving a respective magnet, wherein a predeterminable number of blade sections of the single-part or multi-part blades have at least one azimuthal clip on the circle radius, which clip bends axially during the insertion of the corresponding magnet into the respective recess, and wherein the circle segment-shaped blade sections of the single-part or multipart blades have at least one notch on the circle radius, in which notch a corresponding clip of a blade section of an axially spaced blade engages following the axial bending.
Abstract:
A stator core capable of improving stator core segments in assemblability, positioning accuracy and rigidity is provided. A stator core includes a plurality of stator core segments, and a yoke part of each stator core segment has a first junction and a second junction joined to other adjacent stator core segments. A protrusion is formed at the first junction, and a recess capable of receiving the protrusion is formed at the second junction. The opening area of the recess increases from a deepest section of the recess to an opening of the recess. In the yoke part, a first caulking site where the stator core segment is caulked in an axial direction is formed on an arc passing through the central part of a radial length of the protrusion and extending in a circumferential direction.
Abstract:
A method for manufacturing a magnet-conductive device includes performing a punch process to a plate by a glue-injectable punch structure, wherein the glue-injectable punch structure includes a punch head and a control member. The punch head comprises an accommodating cavity, an injection hole and an inlet, and a supply channel is formed by the accommodating cavity, the injection hole and the inlet. The control member selectively obstructs the supply channel or permits the supply channel into conduction. By using the method for manufacturing the magnet-conductive device, the stack between plural plates is simplified, and the coupling strength between adjacent plates is enhanced. In addition, this invention considers the gel between adjacent plates to be insulating medium to lower the iron loss of the magnet-conductive plates.
Abstract:
Magnet insertion holes for embedding a plurality of permanent magnets per pole are formed in a rotor core in a protruding shape toward a center of a rotor. A pair of flux control holes formed in a symmetrical shape with respect to a center line between magnetic poles is provided for each magnetic pole in a magnetic pole gap of the rotor core. Where d is a diameter of the respective flux control holes, m is a center-to-center distance thereof, b is a width of the magnetic pole gap, and τ is a pole pitch between magnetic poles, the flux control holes are provided so that a value of m/T obtained by standardizing the center-to-center distance m by the pole pitch τ satisfies 0.08
Abstract:
Provided is a method for fabricating a molded stator of a rotary electric machine, the method comprising: a lamination step of laminating a plurality of core sheets each having a plurality of core pieces connected to one joining portion via bridge portions, thereby forming a divided-laminated-core group structure; a winding step of winding a coil on a teeth portion of each divided laminated core of the divided-laminated-core group structure; a cutting step of cutting the bridge portions, thereby separating the divided laminated cores wound with the coils; a temporary fixing step of temporarily fixing the divided laminated cores circularly arranged to form a stator; and a molding step of placing, in a mold, the stator into which a mold mandrel is inserted along the inner circumferential surface, and molding an outer circumferential surface of the stator with resin.
Abstract:
Provided is a rotating electrical machine including: a cylinder-shaped housing that includes a plurality of flanges installed to a casing; a stator that includes a cylinder-shaped stator core fixed to the housing through shrinkage fit or press fit; and a rotor that is arranged inside the stator so as to be rotatable, in which, in the stator core, a plurality of steel sheets is stacked, and welding portions used for suppressing deformation of the steel sheets are arranged at positions in the stator core that correspond to the flanges of the housing.
Abstract:
Stator core of motor stator is equipped with a segmented core connecting body which connects in an annular shape a segmented core having a structure whereby laminated core plates are connected and held in place in a laminated state. To connect and fix core laminated plates by clamping, first and second dowels formed in each core laminated plate are used to connect and fix common rings by pressure-fitting them to the first and second end faces at either side of the segmented core connecting body, thus integrating the segmented core connecting body. The segmented core connecting body can be integrated with a simple operation, thus significantly reducing the assembly time for the stator core.
Abstract:
The laminar article for electrical use comprises a plurality of superposed first metal laminations fixed together. Each of the first laminations is provided with at least one fastener projecting from a first surface thereof and defining a recess in its opposite side. Each fastener of one lamination is arranged to fit into a recess of an adjacent lamination. The article presents second laminations interposed between at least two adjacent first laminations fixed together. The second laminations are provided with through apertures which are traversed by the fasteners which fix the adjacent first laminations together. The method consists of die-cutting a plurality of laminations from a metal sheet, rotating the die-cut laminations and superposing them, to then fix them together in predetermined manner. The laminations can be die-cut with a reference axis thereof rotated through a predetermined angle about a reference axis of the sheet metal, to limit the rotations to be imposed on the laminations during their mutual fixing.