Abstract:
A joint scheduling apparatus and method for increasing frequency efficiency and fairness in a multi-channel distributed antenna system using frequency reuse and common control power. One of a Base Station (BS) or Relay Station (RS) are selected to transmit packets to a Mobile Station (MSs), taking into account Quality of Service (QoS) in one of a BS and an RS and grouped into packet groups. The packets are selected from the packet groups, links corresponding to the packets are grouped into a link group, a joint power control is performed on the link group, link elimination and link addition are performed for the link group until optimal solutions are achieved for the links group, channels are allocated to the links when the optimal solutions are achieved for the links, and the status of a user queue is updated.
Abstract:
Disclosed are a method and a system for generating switching control signal separating transmission signal on an access point and a mobile communication terminal in an optical repeater employing, for example, a TDD scheme. The method includes the steps of generating a control signal for generating a switching control signal in transmitting data from the AP and transmitting the control information to a remote during an idle time interval, detecting synchronization information on the downlink signal and time-delay information from the control information, delaying a time interval between the synchronization information and a starting point of the downlink signal, generating the switching control signal for the downlink signal according to the transmission time information of the downlink signal, and performing a switching operation according to the switching control signal and setting a downlink path.
Abstract:
A nitride semiconductor light emitting device and a method of manufacturing the same are disclosed. The nitride semiconductor light emitting device comprises an n-type nitride semiconductor layer formed on a substrate, an active layer formed on the n-type nitride semiconductor layer, a p-type nitride semiconductor layer formed on the active layer, an undoped GaN layer formed on the p-type nitride semiconductor layer, an AlGaN layer formed on the undoped GaN layer to form a two-dimensional electron gas (2DEG) layer at a bonding interface between the AlGaN layer and the undoped GaN layer, and an n-side electrode and a p-side electrode respectively formed on the n-type nitride semiconductor layer and the AlGaN layer to be connected to each other. As a hetero-junction structure of GaN/AlGaN is formed on the p-type nitride semiconductor layer, contact resistance between the p-type nitride semiconductor layer and the p-side electrode is enhanced by virtue of tunneling effect through the 2DEG layer.
Abstract:
A level shifter includes; a level conversion unit which receives a first input signal and a second input signal, wherein the second input signal is an inversion of the first input signal, and generates a first output signal having substantially a same phase of the first input signal and a voltage which is higher than the first input signal and a second output signal having substantially a same phase as the first input signal and a voltage which is lower than the first input signal; and wherein the level shifter further includes an amplifying unit which receives the first and second output signals and generates a third output signal having substantially a same phase as the first input signal and an amplitude which is greater than the first input signal.
Abstract:
The present invention relates to a method of manufacturing a vertical GaN-based LED. The method includes forming an insulating pattern on a substrate to define LED regions having a predetermined size; sequentially stacking an n-type GaN-based semiconductor layer, an active layer, and a p-type GaN-based semiconductor layer on the substrate except for the insulating pattern to form a light emitting structure; removing the insulating pattern to divide the light emitting structure into LED sections having a predetermined size; forming p-electrodes on the LED sections, respectively; forming a structure support layer on the p-electrodes; removing the substrate to expose the divided n-type GaN-based semiconductor layer; and forming n-electrodes on the exposed n-type GaN-based semiconductor layer.
Abstract:
An electron emission display includes: an electron emission substrate having at least one electron emission device formed thereon, an image forming substrate, and at least two spacers for supporting the electron emission substrate and the image forming substrate to be spaced apart from each other. Areas of the spacers per unit area are increased in at least one direction from a central region to a periphery region. The areas can be increased by, for example, increasing a cross-sectional area of each spacer or increasing the number of spacers. In another embodiment, heights of the spacers are decreased in at least one direction from the center region to the periphery region.
Abstract:
The present invention relates to an organic light emitting display, and an aspect of the invention is to minimize the phenomenon of reduction in luminance of the organic light emitting diode display, by dividing an analog data to a positive data and a negative data, applying the same data with different polarities to the control electrode of a driving transistor, and preventing the deterioration of threshold voltage of the driving transistor.For this purpose, the present invention discloses an organic light emitting display including a frame memory that stores data of one or more frames, doubles the frequency of the frame data, and repeatedly outputs the frame data; a look-up table memory that divides the frame data doubled and outputted from the frame memory, into two digital input signals such as a positive data and a negative data, and outputs the data; and a digital-analog converter that receives the positive data and negative data outputted from the look-up table memory, converts the data to analog data, and outputs the analog data.
Abstract:
The present invention relates to a method of manufacturing a vertically-structured GaN-based light emitting diode. The method of manufacturing a vertically-structured GaN-based light emitting diode includes forming a GaN layer on a substrate; patterning the compound layer in a predetermined shape; forming an n-type GaN layer on the patterned compound layer through the epitaxial lateral over-growth process and sequentially forming an active layer and a p-type GaN layer on the n-type GaN layer; forming a structure supporting layer on the p-type GaN layer; sequentially removing the substrate and the GaN layer formed on the substrate after forming the structure supporting layer; removing the patterned compound layer exposed after removing the GaN layer so as to form an n-type GaN layer patterned in a concave shape; and forming an n-type electrode on the n-type GaN layer patterned in a concave shape.
Abstract:
The present invention relates to a method of manufacturing a vertically-structured GaN-based light emitting diode. The method of manufacturing a vertically-structured GaN-based light emitting diode includes forming a GaN layer on a substrate; patterning the compound layer in a predetermined shape; forming an n-type GaN layer on the patterned compound layer through the epitaxial lateral over-growth process and sequentially forming an active layer and a p-type GaN layer on the n-type GaN layer; forming a structure supporting layer on the p-type GaN layer; sequentially removing the substrate and the GaN layer formed on the substrate after forming the structure supporting layer; removing the patterned compound layer exposed after removing the GaN layer so as to form an n-type GaN layer patterned in a concave shape; and forming an n-type electrode on the n-type GaN layer patterned in a concave shape.
Abstract:
An electron emission display includes a first substrate and a second substrate facing each other, a side member formed along the edges of the first substrate and the second substrate to form a vacuum envelope together with the first substrate and the second substrate, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate to emit visible light when impacted by electrons from the electron emission unit, and a thermal conduction member connecting the first substrate and the second substrate.