Abstract:
A magnetic separator is formed of a number of substantially parallel filter discs which are attached on a rotatable shaft extending radially therefrom with gaps between the discs. The discs are arranged to produce local magnetic field inhomogeneities in the gap between the discs. Stationary scraper means in the form of channel-like bodies of plastic material are arranged between each pair of discs with their free edges engaging the opposed faces of the discs. An endless belt is arranged to run in the channel for carrying out the material scraped from the discs to the outside.
Abstract:
An electromagnetic filter for separating iron oxides from the feed water of a steam power plant. The filter comprises a cylindrical tubular filter containing steel ferromagnetic particles and an electric coil for producing a magnetic field. The field intensity is considerably about the saturation field intensity of the magnetizable particles.
Abstract:
Disclosed are methods and devices that are useful for processing water-including waste such as wastewater and sludge by reacting the water-including waste with an amount of ferromagnetic powder, an amount of anionic flocculant and an amount of cationic flocculant forming ferromagnetic waste particles suspended in water of the fluid waste, the ferromagnetic waste particles subsequently separated from water of the fluid waste by application of a magnetic field.
Abstract:
The present disclosure relates to a method for isolating a biological target material from a liquid sample in a multiwell plate using magnetic particles, wherein high efficiency and low elution volumes are achieved by specific movements of the multiwell plate and a magnetic separation plate in relation to each other. Also disclosed is a pre-analytical system suitable for carrying out the method.
Abstract:
An extracting device 200 includes a plurality of extraction vessels 210 which retain a solution containing magnetic particles and a sample, an oscillating mechanism 220 which oscillates the extraction vessels 210, magnet bodies which exert a magnetic force on extraction vessels 210, a magnet moving mechanism 258, 259 which moves the magnet bodies between a contact position in which the magnet bodies are in contact with the extraction vessels 210 and a non-contact position, a temperature adjustment unit which adjusts a temperature of the extraction vessels 210, a temperature adjustment unit moving mechanism 248, 249 which moves the temperature adjustment unit between a contact position in which the temperature adjustment unit is in contact with the extraction vessels 210 and a non-contact position in which the temperature adjustment unit is not in contact with the extraction vessels 210, and a control unit which controls an action of each of the mechanisms.