Abstract:
A single-event upset immune frequency divider circuit is disclosed. The single-event upset immune frequency divider circuit includes a dual-path shift register, a dual-path multiplexor, and a summing circuit. The dual-path shift register has a clock input, one signal input pair and multiple signal output pairs. The dual-path multiplexor has multiple signal input pairs and one output pair. The signal input pairs of the dual-path multiplexor are respectively connected to the signal output pairs of the dual-input shift register. The dual-path multiplexor selects one of the signal output pairs of the dual-path shift register for feeding back into the signal input pair of the dual-path shift register. The summing circuit then sums the signal input pair of the dual-path shift register to generate an output clock signal that is a fraction of the frequency of an input clock signal at the clock input of the dual-path shift register.
Abstract:
An integrated resistor includes a resistor body region and a resistor contact region that is aligned with the body region. Because the resistor includes an aligned body and contact, it often occupies a smaller area than prior integrated resistors having a similar resistance value. A method for forming such a resistor is also disclosed.
Abstract:
A method is disclosed of efficiently synchronizing time bases of multi-netting network nodes. A first node transmits a synchronizing request on a subnet associated with the highest time quality in its source table, then simultaneously monitors that subnet and up to three additional subnets associated with lower time qualities in its source table. If the first node does not receive a response, it transmits the request on the subnet associated with the next highest time quality in its source table. A second node simultaneously monitors the subnet associated with its time quality and a plurality of subnets associate with consecutively higher time qualities. Upon receiving the synchronization request, it responds on the subnet associated with its time quality. The disclosed method is fully compatible with networks that include single-netting nodes, and can be implemented by a JTRS node exchanging RTT messages on a Link 16 network.
Abstract:
A guidance system for a guided munition has an inertial measurement unit (IMU) or another type of first sensor on the guided munition, electro-optical/infrared (EO/IR) sensor on the guided munition, and a guidance computer assembly (GCA) having a Programmable Real-Time Unit Industrial Communication SubSystem (PRU-ICSS), wherein the PRU-ICSS is in operative communication with the IMU or another type of first sensor and the EO/IR. The PRU-ICSS has a first Programmable Real-Time Unit (PRU), wherein the first PRU is programmed to receive and process input data from the IMU or another type of first sensor on the guided munition, and the PRU-ICSS has a second PRU, wherein the second PRU is programmed to receive and process input data from the EO/IR sensor on the guided munition.
Abstract:
A portable launcher to launch a guided projectile at an aerial target, wherein the guided projectile has a projectile guidance kit and a target leading guidance kit that is provided with the guided projectile and the portable launcher. The target leading guidance kit includes a target lead estimation protocol stored on a computer readable media and accessible by a processor of the target leading guidance kit. When the processor executes the target lead estimation protocol, the processor is instructed to dynamically lead a reticle of an electronic sight of the target leading guidance kit from the initial target position to the lead target position in response to the projectile guidance kit detecting a speed of the aerial target and an inertial measurement unit of the target leading guidance kit that measures the slew of the guided projectile from the initial position to the translated position.
Abstract:
Techniques are provided for steering vector generation. A methodology implementing the techniques according to an embodiment includes converting time domain data received from an antenna array to channelized frequency domain data. The method also includes receiving a request from a signal detection system, the request including a timestamp and duration of a detected signal of interest (SOI) and an indication that the SOI is pulsed or continuous. The method further includes generating, for a pulsed SOI, steering vectors to steer the antenna array to the pulsed SOI based on a segment of the time domain data stored in a first memory and identified by the time stamp and duration; and generating, for a continuous SOI, steering vectors to steer the antenna array to the continuous SOI based on a segment of the channelized frequency domain data stored in a second memory and identified by the time stamp and duration.
Abstract:
A method of determining a schedule for a pointing device includes distributing targets among a plurality of groups and assigning schedules to the groups, after which the groups and group schedules are not modified. A partial pointing schedule is successively grown by selecting a list of remaining groups, and appending a best candidate sub-schedule for the list to the partial schedule. If a sub-schedule cannot be found for which the grown partial schedule meets all applicable requirements, the partial schedule is pruned to a previous state and a different, previously evaluated sub-schedule is appended to the pruned partial schedule to attempt re-growth. Groups, group schedules, lists, and sub-schedules can be selected according to values, dwell times, and/or windows of performance of the targets, groups, and sub-schedules. If no schedule is found that meets all requirements, a missed group can be excluded from the schedule.
Abstract:
A communications circuit includes a first circuit block and a second circuit block. The first circuit block includes a first splitter, a first signal path coupled to a first output of the first splitter, a second signal path coupled to a second output of the first splitter, and a first switch configured to couple the second signal path to a third signal path or to couple a fourth signal path to the third signal path. The second circuit block includes a second splitter, a fifth signal path coupled to a first output of the second splitter, a sixth signal path coupled to a second output of the second splitter, and a second switch configured to couple the sixth signal path to the third signal path or to couple a seventh signal path to the third signal path. The third signal path extends between the first and second circuit blocks.
Abstract:
A method of manufacturing a structurally competent, EMI-shielded IR window includes using a mathematical model that combines the Sotoodeh and Nag models to determine an optimal thickness and dopant concentration of a doped layer of GaAs or GaP. A slab of GaAs or GaP is prepared, and a doped layer of the same material having the optimal thickness and dopant concentration is applied thereto. In embodiments, the doped layer is applied by an HVPE method such as LP-HVPE, which can also provide enhanced GaAs transparency near 1 micron. The Drude model can be applied to assist in selecting an anti-reflective coating. If the model predicts that the requirements of an application cannot be met by a doped layer alone, a doped layer can be applied that exceeds the required IR transparency, and a metallic grid can be applied to improve the EMI shielding, thereby satisfying the requirements.