Abstract:
A strain wave gearing (1) has a flexible externally toothed gear (3) with a boss (7). A boss-side fastening surface (16) formed on the boss is coaxially superposed with a member-side fastening surface (15) of an output member (11), and the boss (7) and the output member are fastened by fastening bolts (13). The bolt tension of the fastening bolts (13) causes the engaging protuberances (20) of the boss-side fastening surface (16) to dig into the member-side fastening surface (15) by a predetermined dig-in depth. A large frictional force is produced in the fastening portions between the flexible externally toothed gear (3) and the output member (11). It is thereby possible to transmit the necessary torque by the bolt tension alone without using pins or a friction sheet together with the fastening bolts.
Abstract:
A press plate is tacked to a boss of a cup-shaped flexible externally toothed gear of a wave gear device unit. A second arm as a driven member is attached by a fastening bolt to an end surface on an outer side of an output flange of the wave gear device unit. The fastening bolt is screwed into and secured in a tap hole of the press plate from each bolt insertion hole of the second arm, via a flange-side bolt insertion hole and a boss-side bolt insertion hole. A fastening structure can be achieved in which a driven member is fastened to a wave gear device unit in which holes are easily machined into the output flange, and only a few fastening bolts are needed to fasten the boss, the output flange, and the driven member.
Abstract:
A hollow-type strain wave gearing unit (1) has a sealing member (14) for sealing a gap (15) opening to the inner peripheral surface of a unit hollow portion (5) passing through in an axis (1a) direction. The gap (15) includes a gap section (15b) between an outer peripheral side end race (48b) on the wave generator side and a boss side end face (108), both faces opposing each other in the axis (1a) direction, and the sealing member (14) is assembled therein. The gap section (15b) is formed in a state partially entering the inside of the inner ring (11b) of the second bearing (11) supporting the wave generator (4). It is possible to realize a hollow-type strain wave gearing unit with a sealing mechanism that is suitable for increasing the inner diameter of the unit hollow portion and for reducing the unit axial length.
Abstract:
A flat strain wave gearing device equipped with: a first internal gear and a second internal gear; a flexible tubular external gear; and an elliptically shaped wave generator. In the direction of a central axis, the center of support of the external teeth by the wave generator is offset, by an offset amount of Δ along the direction of the central axis, with respect to the tooth-width center of the external teeth of the external gear. By setting the offset direction and the offset amount appropriately it is possible to achieve a strain wave gearing device which is suitable in terms of the operating conditions and the mechanical characteristics of the first and second internal gears.
Abstract:
In a wave gear device, an annular rigid externally toothed gear is disposed on the inner side of a cup-shaped flexible internally toothed gear. An internal-tooth-formation portion of the flexible internally toothed gear and a pushed portion pushed by a wave generator and flexed ellipsoidally are formed in different positions along the center axis line. The wave generator is disposed on the inner side of the flexible internally toothed gear, the pushed cylindrical portion is pushed from the inner side to the outside along the radial direction thereof by the wave generator, whereby the pushed cylindrical portion is flexed ellipsodially. As the outside diameter dimension of the wave gear device is determined by that of the flexible internally toothed gear, a wave gear device having a small outside diameter dimension can be obtained.
Abstract:
In a self-calibration method of an angle detector, an angle interval between first and second scale reader heads are set, so that a single rotation is not equally divided into an integer number of portions by a value of the angle interval and that a plurality of rotations N are equally divided into M equal portions by the value of the angle interval. Readings by the scale reader heads during N rotations of the divided circle are obtained at a pre-set data sampling interval. From differences in readings by these scale reader heads, data of the sequential two-point method relating to an angle scale error of the divided circle are obtained at the data sampling interval. The scale error of the divided circle at the data sampling interval is calculated by synthesizing the data using the fact that an average of the data for the rotations N reaches approximately zero.
Abstract:
A lightweight bearing and wave gear drive are provided. An outer or inner bearing ring of the bearing has fixing holes to enable the ring to be attached to another member. The parts of the bearing on which raceway surfaces are formed are made of an iron-based material, while the main bearing ring member is formed of a lightweight material that is lighter than the iron-based material. Surface portions that constitute fixing bolt seats are plated to increase the strength of such portions. The wave gear drive includes a rigid internal gear, a flexible external gear located inside the internal gear, and a wave generator located inside the external gear. The internal and external gears are coupled by the lightweight bearing in a way that allows the gears to rotate relative to each other.