Abstract:
A variable gear ratio device featuring geared segments with variable gear ratio adapted for inclusion into mechanical machines, motors and pumps where there is a constant requirement for a variable transfer ratio for the variability and optimization of the load of torque that are formed by a driving shaft and driven shaft. The device features a plurality of engaged gears capable of eccentric rotation where the axis of rotation of the driven shaft is moved outside of the center axis of the driving eccentric geared segment.
Abstract:
The invention relates to a harmonic drive which can be manufactured from a small number of plastic injection moulded parts, dispensing with the additional space required for a sensor disk which is flange-mounted on the main drive pinion in order to detect kinematic information for a control circuit, by integrating the corresponding sensor equipment directly into the drive. Preferably, the rotating drive ring is fitted with at least one magnetic dipole as a sensor transmitter whereby the movement thereof when it passes a fixed position on the housing is detected by a stationary detector which is preferably embodied in the form of a Hall generator and mounted on the support ring of the drive.
Abstract:
The pinion gears of a rotary cutterbar equipped with a parallel-series arrangement of idler gears and pinion gears includes a pinion gear support pad formed integrally with the bottom wall of the gear housing and located in close relationship to a bottom surface of the pinion gear so as to prevent the latter from moving, once bearing wear or loosening of mounting hardware has occurred, to the extent that rolling elements of a bearing arrangement supporting the pinion drive shaft are permitted to fall out into the gear housing and cause additional damage to the gearing located in the housing.
Abstract:
A working tool, in particular a soil rammer or a hammer, has two masses that may be linearly moved back and forth with respect to one another, namely a top mass which comprises a driving motor and a ramming or striking working mass which can be moved by the motor relative to the top mass by means of a crank drive and a set of springs. In order to reduce as much as possible the displacement of the top mass, an additional counterweight can be moved by the motor over at least a large part of the path of displacement of the working mass in the opposite direction thereto. The displacement of the end of the set of springs linked to the crank drive and the displacement of the counterweight are preferably offset relative to one another, with respect to the crank angle, by 180null minus a phase shift derived from the construction parameters of the set of springs.
Abstract:
The invention starts from an actuating drive (10) with an electric motor (12), which drives an output shaft (32) via a toothed wheel gear (14) in a planetary design, which includes a first housing-mounted central wheel (16) and a second rotatable central wheel (18), whereby both central wheels (16, 18) each form gear steps with different step-down ratios with at least one planet wheel (20, 22) and the planet wheel (20) belonging to the first central wheel (16) is connected to the planet wheel (22) belonging to the second central wheel (18) in a torque-proof manner. It is proposed that the electric motor (12) drive a planet carrier (26) on which the planet wheels (20, 22) are pivoted.
Abstract:
A lightweight bearing and wave gear drive are provided. An outer or inner bearing ring of the bearing has fixing holes to enable the ring to be attached to another member. The parts of the bearing on which raceway surfaces are formed are made of an iron-based material, while the main bearing ring member is formed of a lightweight material that is lighter than the iron-based material. Surface portions that constitute fixing bolt seats are plated to increase the strength of such portions. The wave gear drive includes a rigid internal gear, a flexible external gear located inside the internal gear, and a wave generator located inside the external gear. The internal and external gears are coupled by the lightweight bearing in a way that allows the gears to rotate relative to each other.
Abstract:
The star-shaped internal geared wheel (15) of a harmonic drive (12) consists of individual tappets (21) which are displaceably interconnected by a retainer ring (28) which circles them at approximately half the height of the tappet shaft, so that they form a single part that can be handled. The inner front end (28) of the tappet shaft, which is thermally dimensionally stable, is provided with a guiding shoe or at least provided with a slide-resistant coating opposite a radially elastically compressible head (26). The internal geared wheel (15) is produced as a one-part plastic injection-moulded element in a multiple component method, with a thermally dimensionally stable foot (23), support ring arms (28) which are elastically moulded onto the respective dimensionally stable and extremely resistant tappet shaft and head walls (27,32) consisting of different plastics.
Abstract:
A mechanical force generator for producing a unidirectional force by converting rotational force energy to a directional force by rotating a plurality of force generating units within a housing. Each force generating unit has a plurality of eccentrics mounted within an elongated structure. The eccentrics rotate around a shaft mounted transversely to the centerline of the elongated structure, and the structure rotates around its centerline, powered by a rotational force supplied to the housing. The rotation of the eccentrics produce a resultant unidirectional force.
Abstract:
A control apparatus of an automatic transmission capable of achieving a smooth change of output shaft torque to torque which can be generated by a friction clutch, thus enabling a smooth gear change even if the output shaft torque is high at the gear change. If the output shaft torque exceeds limit transmission output shaft torque obtained by multiplying a torque capacity of the friction clutch by a gear ratio provided for the friction clutch when a gear change command is issued in the automatic transmission, engine torque is controlled so as to make the output shaft torque decreased to the limit transmission output shaft torque, and then the engine torque control is switched when the output shaft torque decreased to the limit transmission output shaft torque to start the gear change operation.
Abstract:
A phase rotary disk motor switching module employs anchor notches located on the peripheral rim of a rotary disk mounted on a motor to couple with a retaining element to enable the rotary disk to rotate in only one direction and define a plurality of phases for the rotary disk. Every phase has a driven gear coupled with the motor for transmitting output power. Motor power may be switched to a plurality of phases of output positions to maximize utilization of a single motor.