Abstract:
A method comprises determining a tangent to the rear of an udder of a dairy livestock, and determining a tangent to the bottom of the udder of the dairy livestock. The method continues by determining a position relative to the intersection of the two tangents, and extending a robot arm to the determined position.
Abstract:
A connector plug comprises a hook with flexible edges. The hook has a first beveled surface and a second flat surface. A stopper is coupled to the flat surface of the hook by a first barrel portion of the connector plug. The stopper is coupled to a plurality of ridges with flexible edges by a second barrel portion. The plurality of ridges are also coupled to each other by the second barrel portion. A via extends through the connector plug from one end of the connector plug to the other end of the connector plug.
Abstract:
A system for killing pests in an affected area of a structure comprises a heat pump unit placed within an affected area and a thermostatic control. The heat pump unit is configured to receive a flow of water from a faucet, and generate heated air by transferring heat from the flow of water, the heated air being emitted into the affected area in order to raise the temperature of the affected area to a target temperature greater than 120 degrees Fahrenheit. The thermostatic control is configured to monitor a temperature of a flow of water as it is received by the heat pump, monitor a temperature of air, and automatically cease operation of the heat pump when the temperature of the flow of water is above a predefined limit.
Abstract:
A system for operating a robotic arm, comprises a controller and a robotic arm. The controller receives an indication that a stall of a rotary milking platform in which a dairy livestock is located has moved into an area adjacent a robotic arm that is detached from the rotary milking platform. The controller also determines whether a milking cluster is attached to the dairy livestock. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock, comprises receiving a trigger signal indicating that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track, the track having a carriage carrying a robotic arm mounted thereto. The method continues by communicating a first signal to a first actuator coupled to the track and the carriage, the first signal causing operation of the first actuator such that the carriage moves along the track in relation to the rotary milking platform. The method concludes by communicating one or more additional signals to one or more actuators of the robotic arm, the one or more additional signals causing operation of the one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
A system for heating a pipeline comprises a heater operable to heat a fluid, a supply line and a return line. A first strap is positioned at a first portion of a pipeline. A first pocket of the first strap holds the supply line in thermal contact with the first portion of the pipeline. A second pocket of the first strap holds the return line in thermal contact with the first portion of the pipeline. A second strap is positioned at a second portion of the pipeline. A third pocket of the first strap holds the supply line in thermal contact with the second portion of the pipeline. A fourth pocket holds the return line in thermal contact with the second portion of the pipeline.
Abstract:
A system includes a milking stall to accommodate a dairy livestock and a robotic attacher. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method comprises extending a robotic attacher under a dairy livestock positioned in a milking stall, wherein the robotic attacher comprises a nozzle that is positioned generally on the bottom of the robotic attacher during a first operation. The method further comprises rotating the robotic attacher during a second operation such that the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A system for killing pests in an affected area of a structure comprises a heat exchanger unit placed within an affected area, and a thermostatic control. The heat exchanger unit is configured to receive a flow of water from a faucet, and generate heated air by transferring heat from the flow of water received from the faucet to air flowing through the heat exchanger unit. The thermostatic control is configured to monitor a temperature of the flow of water as it is received by the heat exchanger unit, monitor a temperature of the air as it is received at an inlet of the heat exchanger unit, and automatically cease the flow of water to the heat exchanger unit when the temperature of the air received by the heat exchanger unit is greater than the temperature of the flow of water.
Abstract:
A system for killing pests in an affected area of a structure comprises a heat pump unit placed within an affected area. The heat pump unit comprises an evaporator component, a condensor component, and a compressor component. The evaporator component is configured to receive a flow of water from a faucet, and transfer heat from the flow of water to a refrigerant. The condenser component is configured to receive the refrigerant from the evaporator component, and generate heated air by transferring heat from the refrigerant to air flowing through the condenser component. The heated air being emitted into the affected area is in order to raise the temperature of the affected area to a target temperature greater than 120 degrees Fahrenheit. The compressor component is configured to return the refrigerant from the evaporator component of the heat pump unit to the condenser component of the heat pump unit.