Abstract:
A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer.
Abstract:
A casting adapted to carry a light emitting diode die and an anti-static die is disclosed. The casting comprises two electrodes for opposite electrodes and a wall. The light emitting diode die is mounted one of electrodes and the anti-static die is mounted on the other electrode. The wall is arranged between the light emitting diode die and the anti-static die. Further, the height of the wall is larger than that of the anti-static die to shade the anti-static die, whereby reflecting the light emitted from the light emitting diode die. Therefore, the reflection ratio of the light emitting diode die is improved, and the intensity generated by the whole light emitting diode is also improved.
Abstract:
A package substrate of the present invention at least comprises a metal substrate and a plurality of light emitting dies. The metal substrate is provided thereon with at least one trench. The trench is recessed into the surface of the metal substrate through an insulating layer. The light emitting dies are secured in the trench and electrically connected to a predetermined wiring layer on the metal substrate by metal wires, thereby obtaining a light emitting die package substrate with good thermal conductivity, high heat dissipation, separate electrical and thermal paths and a simple and firm structure.
Abstract:
An LED package including a lead-frame, at least an LED chip and an encapsulant is provided. The lead-frame has a roughened surface, the LED chip is disposed on the lead-frame and electrically connected to the lead-frame, and the roughened surface is suitable to scatter the light emitted from the LED chip. In addition, the encapsulant encapsulates the LED chip and a part of the lead-frame, and the rest part of the lead-frame is exposed out of the encapsulant.
Abstract:
A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode.
Abstract:
A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode.
Abstract:
A light emitting diode (LED) package includes a carrier, an LED chip, an encapsulant, a plurality of phosphor particles, and a plurality of anti-humidity particles. The LED chip is disposed on and electrically connected to the carrier. The encapsulant encapsulates the LED chip. The phosphor particles and the anti-humidity particles are distributed within the encapsulant. A first light emitted from the LED chip excites the phosphor particles to emit a second light. Some of the anti-humidity particles are adhered onto a surface of the phosphor particles, while the other anti-humidity particles are not adhered onto the surface of the phosphor particles. The anti-humidity particles absorb H2O so as to avoid H2O from being reacted with the phosphor particles. The LED package of the present application has favorable water resistance.
Abstract:
A fabrication method of light emitting diode is provided. A first type doped semiconductor layer is formed on a substrate. Subsequently, a light emitting layer is formed on the first type doped semiconductor layer. A process for forming the light emitting layer includes alternately forming a plurality of barrier layers and a plurality of quantum well layers on the first type doped semiconductor layer. The quantum well layers are formed at a growth temperature T1, and the barrier layers are formed at a growth temperature T2, where T1