摘要:
A radio transmitter is provided at least comprising a signal generator for generating a continuous signal and an antenna for outputting a transmission signal, wherein at least one output of the signal generator is connected with at least one input of the antenna. Herein, the signal generator is connected with the antenna via an interrupt unit connected between the two for selectively interrupting and maintaining a signal connection between the signal generator and the antenna.
摘要:
The invention relates to an imaging method with synthetic aperture for determining an incident angle and/or a distance of a sensor from at least one object in space, wherein at each of a number of aperture points one echo profile is sensed. Advantageously, for several angles assumed as the incident angle, one phase correction value and/or one distance correction value is calculated, adapted profiles are generated based on the echo profiles by adapting the phase with the phase correction value for each assumed angle and/or by shifting the distance with the distance correction value, for the assumed angle, the adapted profiles are summed or integrated, and a probability distribution is derived, and a probability value for the incident angle and/or for the distance is determined therefrom. A determination of the incident angle is also possible independently of the distance, wherein it is possible to only consider velocities or accelerations.
摘要:
A radio transmitter is provided at least comprising a signal generator for generating a continuous signal and an antenna for outputting a transmission signal, wherein at least one output of the signal generator is connected with at least one input of the antenna. Herein, the signal generator is connected with the antenna via an interrupt unit connected between the two for selectively interrupting and maintaining a signal connection between the signal generator and the antenna.
摘要:
The invention relates to a method for synchronizing clock pulse devices. According to this method, an emission unit emits at least one narrow-band distant signal; clock pulse devices of receiving units are pre-synchronized by coupling the same to the source of one such distant signal; the emission unit emits a wide-band measured signal after a defined waiting time, and the receiving units receive said signal; and the receiving units correlate the wide-band measuring signal with a homogeneously modulated comparison signal, the receiving time of the wide-band measuring signal and the deviation in the synchronization of the clock pulse devices being determined and compensated on the basis of the correlation result.
摘要:
The invention relates to a radar method for exchanging signals between at least two non-coherent transceiver units which respectively have initially non-synchronous, in particular controllable, clock sources, having the following steps: a synchronization in which clock offsets and/or clock rates of the clock sources of the at least two transceiver units are adapted; a full-duplex measuring process in which a first transmission signal of the first transceiver unit is transmitted to the second transceiver unit and a second transmission signal of the second transceiver unit is transmitted to the first transceiver unit via a radio channel; with synchronization prior to the full-duplex measuring process being carried out in such a way that a time offset and/or a frequency offset between the transmission signals at least substantially remain(s) constant during a transmission time of the full-duplex measuring process.
摘要:
The present subject matter relates to a radar system for the detection of surroundings, in particular for a vehicle and/or a transport device, and/or for stationary application, comprising: at least one transmitting-receiving unit for transmitting and receiving radar signals, which is configured to transmit a plurality M of physical angle-modulated signals, in particular chirps, from which a plurality N of virtual angle-modulated signals, in particular chirps, can be formed, wherein each virtual signal comprises several, in particular M, sampling points which are distributed over the physical chirps.
摘要:
The present subject matter relates to a radar system for detecting the surroundings of a moving object, in particular a vehicle and/or a transport device, such as in particular a crane, wherein the system is mounted or mountable on the moving object, wherein the radar system comprises at least one first, non-coherent, and at least one second, non-coherent, radar module with at least one antenna, wherein the radar modules are arranged or can be arranged distributed on the moving object, wherein at least one first radar module is configured differently from at least one second radar module.
摘要:
The invention relates to a radar system for capturing surroundings of a moving object, in particular a vehicle and/or a transportation apparatus, such as a crane, in particular, wherein the system is mounted or mountable on the moving object, wherein the radar system comprises at least two non-coherent radar modules (RM 1, RM 2, . . . RM N) having at least one transmitter antenna and at least one receiver antenna, wherein the radar modules (RM 1, RM 2, . . . RM N) are arranged or arrangeable in distributed fashion on the moving object, wherein provision is made of at least one evaluation device which is configured to process transmitted and received signals of the radar modules to form modified measurement signals in such a way that the modified measurement signals are coherent in relation to one another.
摘要:
A method for signal processing of radar signals of a radar system (100) has at least two radar units (10, 20) arranged at a known distance from one another. At least one spatial field of vision (FoV) of the radar system (100) is captured with radar signals of the at least two radar units (10, 20). A discrete total coordinate system is generated from the field of vision (FoV). Measurement data of the at least two radar units (10, 20) of the radar system (100) generated by the detection of the field of vision (FoV) are co-registered. A multidimensional, vector velocity ({right arrow over (v)}) for at least one resolution cell of the discrete total coordinate system and/or a multidimensional, vector velocity ({right arrow over (v)}100) for the radar system (100) are generated. At least one spatial sub-field of the field of vision (FoV) is constructed using the determined vector velocity ({right arrow over (v)}) and/or the vector velocity ({right arrow over (v)}100) for the radar system and with the measurement data of at least one of the radar units (10, 20).
摘要:
Phase noise compensation can be performed in a primary radar system, such as in transceiver hardware. A first reflected reception signal can be received, corresponding to a reflection of a first transmission signal from an object, and a first measurement signal can be generated using mixing or correlation of the first reflected reception signal and the first transmission signal. A second measurement signal can be similarly generated from a second transmission signal and a second reflected reception signal. The first and second measurement signals include respective components including complex conjugate representations of each other. The components correspond to interfering components associated with phase noise, and such respective components can cancel each other to suppress phase noise.