Abstract:
A process optically transports digital data over an all-optical long-haul communication path. The process includes transporting digital optical data signals at a selected bit rate and a selected wavelength over a sequence of transmission spans. The sequence includes 70 percent or more of the spans of the long-haul all-optical communication path. Each span of the sequence has a primary local maximum optical power point for the wavelength on a transmission fiber and nearest to an input of the span. The transporting causes a cumulative dispersion of each signal to evolve such that residual dispersions per span are positive over some of the spans and are negative over other of the spans. At the primary local maximum power points, magnitudes of cumulative dispersions of the signals in pico seconds per nanometer remain at less than 32,000 times the inverse of the bit rate in giga bits per second.
Abstract:
An apparatus includes a crystalline substrate, a layer of a first group III-nitride located on a planar surface of the substrate, and a layer of a second group III-nitride located over the layer of the first group III-nitride. The first and second group III-nitrides have different alloy compositions. The layer of second group III-nitride may have a pattern of columnar holes or trenches therein. The apparatus may include a plurality of pyramidal field-emitters that include the second group III-nitride.
Abstract:
An apparatus includes an optical wavelength-converter and a polarization splitter. The polarization splitter is configured to receive input and pump light, to direct a first polarization component of the received input and pump light to a first optical path, and to direct a second polarization component of the received input and pump light to a separate second optical path. The optical wavelength-converter has first and second optical ports. The first optical port is at an end of the first optical path. The second port is at an end of the second optical path. The wavelength-converter outputs wavelength-converted light from one of the ports in response to receiving the input and pump light at the other of the ports. The two optical paths may include polarization-maintaining optical waveguides. The polarization splitter and optical paths may be configured to transmit substantially the same pump light intensity to the two optical ports.
Abstract:
An energy-management system for controlling energy consumption in a relatively small network of energy-consuming/generating objects connected to an electricity grid and located, e.g., at a user premises. The energy consumption is managed through a programmable gateway device that can be accessed remotely, e.g., through a smart-meter network of the utility company or through a short-range wireless link. A user interface for the remote access can be implemented, e.g., using a smart phone or a tablet. In operation, the gateway device advantageously provides the user and/or the utility company with numerous opportunities for realizing cost and/or energy savings through appropriate and timely response to various actionable conditions, such as price-of-electricity fluctuations, configuration-modification requests, failure notices, service requirements, hazard signals, etc.
Abstract:
A method of processing an electromagnetic signal, comprising includes configuring a waveguide that includes a multiferroic medium to propagate the electromagnetic signal. A mechanical strain or a control electrical or magnetic field is applied to the waveguide such that the applying changes a permittivity or a permeability of the medium. The electromagnetic signal is propagated through said waveguide while performing the applying.
Abstract:
A method of processing an electromagnetic signal, comprising includes configuring a waveguide that includes a multiferroic medium to propagate the electromagnetic signal. A mechanical strain or a control electrical or magnetic field is applied to the waveguide such that the applying changes a permittivity or a permeability of the medium. The electromagnetic signal is propagated through said waveguide while performing the applying.
Abstract:
System including electromagnetic radiation source and electromagnetic radiation detector. Electromagnetic radiation source is configured to excite, with electromagnetic radiation having first source frequency, object configured for suppressing responsive emission of electromagnetic radiation having first source frequency. Electromagnetic radiation detector is configured to receive responsive emission of electromagnetic radiation from object. System is configured to detect presence of object. Method includes exciting, with electromagnetic radiation having first source frequency, object configured for suppressing responsive emission of electromagnetic radiation having first source frequency. Method includes receiving responsive emission of electromagnetic radiation from object and utilizing responsive emission to detect presence of object.
Abstract:
System including signal processor in communication with sound detector and with sound-emitting device. Sound detector and sound-emitting device are in audio communication with occupant compartment. Signal processor is configured for receiving input signal from sound detector being indicative of background audio noise in occupant compartment, and for causing sound-emitting device to emit output sound that partially cancels background audio noise in manner responsive to received input signal. Another system, including array of sound detectors and array of sound-emitting devices. Method includes providing signal processor in communication with sound detector and sound-emitting device, where sound detector and sound-emitting device are in communication with occupant compartment. Further in method, signal processor is caused to receive input signal from sound detector being indicative of background audio noise in occupant compartment. Additionally in method, signal processor is induced to cause sound-emitting device to emit output sound that partially cancels background audio noise in manner responsive to received input signal.
Abstract:
An apparatus includes a medium that is a metamaterial over a frequency range. The medium includes a stack of layers or slabs. A mechanical, electrical, or magnetic property of the layers or slabs of the stack varies monotonically between neighboring ones of the layers or slabs.
Abstract:
System including electromagnetic radiation source and electromagnetic radiation detector. Electromagnetic radiation source is configured to excite, with electromagnetic radiation having first source frequency, object configured for suppressing responsive emission of electromagnetic radiation having first source frequency. Electromagnetic radiation detector is configured to receive responsive emission of electromagnetic radiation from object. System is configured to detect presence of object. Method includes exciting, with electromagnetic radiation having first source frequency, object configured for suppressing responsive emission of electromagnetic radiation having first source frequency. Method includes receiving responsive emission of electromagnetic radiation from object and utilizing responsive emission to detect presence of object.