Abstract:
A thin film transistor (TFT), including a crystalline semiconductor pattern on a substrate, a gate insulating layer on the crystalline semiconductor pattern, the gate insulating layer having two first source/drain contact holes and a semiconductor pattern access hole therein, a gate electrode on the gate insulating layer, the gate electrode being between the two first source/drain contact holes, an interlayer insulating layer covering the gate electrode, the interlayer insulating layer having two second source/drain contact holes therein, and source and drain electrodes on the interlayer insulating layer, each of the source and drain electrodes being insulated from the gate electrode, and having a portion connected to the crystalline semiconductor pattern through the first and second source/drain contact holes.
Abstract:
A thin film transistor (TFT), including a crystalline semiconductor pattern on a substrate, a gate insulating layer on the crystalline semiconductor pattern, the gate insulating layer having two first source/drain contact holes and a semiconductor pattern access hole therein, a gate electrode on the gate insulating layer, the gate electrode being between the two first source/drain contact holes, an interlayer insulating layer covering the gate electrode, the interlayer insulating layer having two second source/drain contact holes therein, and source and drain electrodes on the interlayer insulating layer, each of the source and drain electrodes being insulated from the gate electrode, and having a portion connected to the crystalline semiconductor pattern through the first and second source/drain contact holes.
Abstract:
An organic light emitting diode (OLED) display that includes a substrate, a thin film transistor, and a pixel electrode. The thin film transistor is formed on the substrate and includes a semiconductor layer, a gate electrode, a source electrode, and a drain electrode. The pixel electrode is electrically connected to the thin film transistor and is formed on the same layer as the source electrode and the drain electrode. The source electrode and the drain electrode include a first conductive layer, and the pixel electrode includes a first conductive layer and a second conductive layer stacked thereon.
Abstract:
An organic light emitting display apparatus including a substrate, a first touch sensing electrode layer on the substrate, a first protective layer on the substrate, the first protective layer covering the first touch sensing electrode layer, a ground layer on the first protective layer, the ground layer being electrically grounded, an insulating layer on the ground layer, and an organic light emitting device on the insulating layer.
Abstract:
A thin film transistor (TFT) array arrangement, an organic light emitting display device that includes the TFT array arrangement and a method of making the TFT array arrangement and the organic light emitting display device. The method seeks to reduce the number of masks used in the making of the TFT array arrangement by employing half-tone masks that are followed by a two step etching process and by forming layers of the capacitor simultaneous with the formation of layers of the source, drain and pixel electrodes. As a result, individual layers of the capacitor are on the same level and are made of the same material as ones of the layers of the source, drain and pixel electrodes. The capacitor has three electrodes spaced apart by two separate dielectric layers to result in an increased capacity capacitor without increasing the size of the capacitor.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same. The OLED display device includes a substrate having a pixel region and a non-pixel region, a buffer layer arranged on the substrate, a semiconductor layer arranged in the non-pixel region of the substrate, a first electrode arranged in the non-pixel region and in the pixel region and electrically connected to the semiconductor layer, a gate insulating layer arranged on an entire surface of the substrate and partially exposing the first electrode in the pixel region, a gate electrode arranged on the gate insulating layer to correspond to the semiconductor layer, a pixel defining layer partially exposing the first electrode, an organic layer arranged on the first electrode; and a second electrode arranged on the entire surface of the substrate.
Abstract:
A flat panel display apparatus that can be manufactured with less patterning operations using a mask, and a method of manufacturing the same, the flat panel display apparatus including a substrate; an active layer of a thin film transistor (TFT); a first bottom electrode and a first top electrode of a capacitor; a first insulation layer formed on the substrate; a gate bottom electrode and a gate top electrode corresponding to the channel region; a second bottom electrode and a second top electrode of the capacitor; a pixel bottom electrode and a pixel top electrode; a second insulation layer formed on the gate electrode, the second electrode of the capacitor, and the pixel top electrode; and a source electrode and a drain electrode formed on the second insulation layer.
Abstract:
A organic light emitting display device includes a thin film transistor (TFT) having a gate electrode, a source electrode and a drain electrode which are insulated from the gate electrode, and a semiconductor layer which is insulated from the gate electrode and which contacts each of the source electrode and the drain electrode; and a pixel electrode electrically connected to one of the source electrode and the drain electrode. The gate electrode is made up of a first conductive layer and a second conductive layer on the first conductive layer, and the pixel electrode is formed of the same material as the first conductive layer of the gate electrode on a same layer as the first conductive layer of the gate electrode.
Abstract:
An organic light emitting diode display device and a method of manufacturing the same are disclosed. The organic light emitting diode display device includes a substrate having an emission section and a non-emission section, a semiconductor layer located on the substrate, a gate dielectric layer located over an entire front surface of the substrate, a gate electrode located in correspondence to the semiconductor layer, a dielectric layer located over the entire front surface of the substrate, source and drain electrodes and a first electrode located on the dielectric layer and electrically connected to the semiconductor layer, a pixel definition layer exposing a part of the first electrode, a spacer located on the pixel definition layer and located on the non-emission section of the substrate, an organic film layer located on the first electrode, and a second electrode located over the entire front surface of the substrate.
Abstract:
An organic light emitting diode display device and a method of manufacturing the same are disclosed. The organic light emitting diode display device includes a substrate having an emission section and anon-emission section, a semiconductor layer located on the substrate, a gate dielectric layer located over an entire front surface of the substrate, a gate electrode located in correspondence to the semiconductor layer, a dielectric layer located over the entire front surface of the substrate, source and drain electrodes and a first electrode located on the dielectric layer and electrically connected to the semiconductor layer, a pixel definition layer exposing a part of the first electrode, a spacer located on the pixel definition layer and located on the non-emission section of the substrate, an organic film layer located on the first electrode, and a second electrode located over the entire front surface of the substrate.