Abstract:
An apparatus is disclosed for controlling the oxidation state of catalyst for use in a fuel cell. The apparatus includes a holder, a working electrode disposed in the holder, an auxiliary electrode located right above the working electrode, a reference electrode disposed in the holder and a power supply connected to all of the electrodes.
Abstract:
A method is disclosed for making Ru—Se and Ru—Se—W catalyst. In the method, carrier is processed with strong acid and poured into first ethylene glycol solution. Ultra-sonication and high-speed stirring are conducted on the first ethylene glycol solution, thus forming carbon paste. The carbon paste is mixed with second ethylene glycol solution containing at least one nanometer catalyst precursor and an additive. High-speed stirring is conducted to form mixture. The mixture is heated so that Ru—Se catalyst is reduced. The mixture is filtered to separate the carrier. Then, the carrier is washed with de-ionized water. Conducting drying and hydrogen reduction are conducted to make the Ru—Se catalyst on the carrier.
Abstract:
Platinum- and platinum alloy-based catalysts with nanonetwork structures are formed on a substrate at first. Then, a support of a proton exchange membrane is taken. In the end, the catalysts are transferred to the support.
Abstract:
This invention relates to the preparations of noble metal catalysts, i.e., platinum and platinum alloys, on suitable supports with nanonetwork structures and high catalytic efficiencies. A compact structure of a monolayer or a few layers is formed by self-assembly of organic polymer, e.g., polystyrene (PS), nanospheres or inorganic, i.e., silicon dioxide (SiO2), nanospheres on a support surface. In the void spaces of such a compact arrangement, catalyst is formed by filling with catalyst metal ion-containing aqueous solution and reduced by chemical reduction, or formed by vacuum sputtering. When using organic polymer nanospheres as the starting or structure-directing material, the polymer particles are removed by burning at a high temperature and the catalyst having a nanonetwork structure is obtained. In the case of using silicon dioxide nanospheres as the starting material, silicon dioxide particles are dissolved with hydrofluoric acid solution and evaporated away leading to formation of a similar nanonetwork structure made of catalyst. The catalysts prepared by these methods possess characteristics of robust in structure, uniform in hole size and high in catalytic surface area. Their main applications include uses as catalysts in direct methanol and proton exchange membrane fuel cells, as well as in chemical reactors, fuel reformers, catalytic converters, etc.
Abstract:
A simple fuel cell-type electrochemical sensor for sensing the concentration of a specific fuel, e.g., methanol, ethanol, formic acid, sodium borohydride, etc., prepared in an aqueous solution is developed. The sensor is mainly composed of a membrane electrode assembly (MEA), which is made by hot pressing a piece of electro catalytic anode and a piece of electro catalytic cathode on each side of a proton exchange membrane (PEM), such as Nafion® 117. It is uniquely designed to have an anode size much smaller than that of the cathode and utilizes ambient air as an oxidant. The innovative approach is to ensure the fuel diffused to the anode/membrane interface can be totally reacted so as to eliminate the interferences of fuel crossover and enhance output signal. Thus, the measured sensor current reflects the concentration of diffusion-limited fuel at the membrane/electrode interface, which is proportional to fuel concentration in the bulk. It can be easily operated in a passive mode as well as in an active mode with aqueous fuel solution under a stagnant or a flowing condition. The applications include uses in fuel cell systems, such as direct methanol fuel cell systems, for sensing and monitoring fuel concentration in an aqueous solution.