Abstract:
An improved capacitor is described. The capacitor has an anode with an anode lead wire extending from a first face of the anode. A dielectric layer is on the anode and a cathode is on the dielectric. An anode lead with an anode base and a cavernous anode protrusion extending from the base is provided wherein the anode lead wire is in electrical contact with the anode protrusion. A cathode lead with a cathode base is provided wherein the cathode base is in electrical contact with the cathode on a side face wherein the side face is adjacent the first face and the cathode base and said anode base are coplanar.
Abstract:
Disclosed are apparatuses, methods, and lithographic systems for holographic mask inspection. A holographic mask inspection system (300, 600, 700) includes an illumination source (330), a spatial filter (350), and an image sensor (380). The illumination source being configured to illuminate a radiation beam (331) onto a target portion of a mask (310). The spatial filter (350) being arranged in a Fourier transform pupil plane of an optical system (390, 610, 710), where the spatial filter receives at least a portion of a reflected radiation beam (311) from the target portion of the mask. The optical system being arranged to combine (360, 660, 740) the portion of the reflected radiation beam (311) with a reference radiation beam (361, 331) to generate a combined radiation beam. Further, the image sensor (380) being configured to capture holographic image of the combined radiation beam. The image may contain one or more mask defects.
Abstract:
Disclosed is a tubular cutting element for axial reciprocal movement within an outer tubular sleeve. The cutting element has an elongate tubular body, having a proximal end, a distal end and a cutting tip. The tubular body is formed in a drawing operation and the cutting tip is formed in a milling operation. The tubular body may have a Rockwell C hardness of no more than about 40, and the cutting tip may have a Rockwell C hardness of at least about 50.
Abstract:
A method and systems for reticle inspection. The method includes coherently illuminating surfaces of an inspection reticle and a reference reticle, applying a Fourier transform to scattered light from the illuminated surfaces, shifting the phase of the transformed light from the reference reticle such that a phase difference between the transformed light from the inspection reticle and the transformed light from the reference reticle is 180 degrees, combining the transformed light as an image subtraction, applying an inverse Fourier transform to the combined light, and detecting the combined light at a detector. An optical path length difference between two optical paths from the illumination source to the detector is less than a coherence length of the illumination source. The image detected by the detector represents a difference in amplitude and phase distributions of the reticles allowing foreign particles, defects, or the like, to be easily distinguished.
Abstract:
Apparatus for retrieving a tissue volume of a variety utilizing an electrosurgically excited cable implemented capture component which performs in combination with an improved precursor assembly. Where that assembly is electrosurgically excited, then it is located and dimensioned to avoid arc-over with the capture component cables. A precursor assembly also is implemented with electrically insulative ceramic blade and trocar configurations.
Abstract:
In general, a mobile unit for communicating with other mobile units assigned to a group within a Multipoint Voice Network (“MVN”) having a plurality of groups is shown. The mobile unit may include transmitter, receiver, and controller. The transmitter is enabled to transmit a set of multiple carrier frequencies, where the transmitter is configured to transmit on one frequency chosen from a sub-set of multiple carrier frequencies from the set of multiple carrier frequencies. The sub-set of multiple carrier frequencies correspond the group. The receiver is configured to receive and demodulate the sub-set of multiple carrier frequencies and the controller configures the receiver to receive and demodulate the sub-set of multiple carrier frequencies that is assigned to the group.
Abstract:
A collapsible electro-acoustic transducer system (“CETS”) is described. The CETS system may include a base housing with at least one electro-acoustic transducer, where the base housing includes a base housing top and a base housing bottom, and a movable housing having at least one electro-acoustic transducer, where the movable housing is movably attached to the base housing. The CETS may also include an attaching element movably attaching the movable housing to the base housing, where the movable housing is configured to collapse within the base housing.
Abstract:
The invention provides a foamed-elastomer collapsible box divider for dividing a box into at least six cushioned compartments when extended, and when collapsed having the form of an elongated component stepped on four edges as viewed from a side. The steps being formed by two face-to-face central elongated leaves, in combination with a short top and a short bottom leaf, and at least a first and a second leaf of intermediate length. The first intermediate leaf being disposed between the short top leaf and the central elongated leaves, and the second intermediate leaf being disposed between the short bottom leaf and the central elongated leaves, each leaf being separate along a major portion of its length from adjacent leaves and being transversely cut through part of its thickness at a pitch corresponding to the width of one of the compartments, each elongated and intermediate leaf being joined to adjacent leaves by at least one narrow connecting line adjacent to the transverse cut, the connecting line being formed by the remaining uncut material adjacent to the transverse cut.
Abstract:
A transaction card assembly and method for forming a transaction card assembly. The transaction card assembly may include two or more transaction cards that are each useable with different issuers. A first transaction card may be useable only with a first issuer, and the second transaction card may be useable with one or more entities other than the first issuer. The transaction card assembly may be formed from a same piece of material and may include one or more machine-readable features, such as a barcode, magnetic strip or electronic device. The transaction cards may meet ANSI and ISO specifications, e.g., after the cards are separated from each other without the use of tools.