Abstract:
An impeller for use in a regenerative pump for pumping automotive fuel to an engine includes a plurality of vanes radially extending from a core. Each vane has a leading surface, a trailing surface, and a sidewall between the leading surface and the trailing surface. A plurality of partitions is interposed between the vanes such that the vanes and partitions define a plurality of vane grooves. Fuel is then pumped by the vanes through the vane grooves such that the fuel flows along a generally spiral path thereby defining a primary vortex. A relief is formed at least partially along the length of each vane at the intersection between the trailing surface and the sidewall. This relief causes the fuel flowing along the generally spiral path, also known as the primary vortex, to also rotate about an instantaneous axis thereby defining a secondary vortex. The secondary vortex has the benefit of reducing turbulence with the attendant benefit of reducing cavitation or vapor generation within the fuel pump.
Abstract:
A fuel pump has a motor which rotates a shaft with an impeller fitted thereon for pumping fuel within a pumping chamber comprised of a cover channel and a bottom channel formed in a pump cover and a pump bottom, respectively, which encase the impeller. The cover channel begins at a fuel inlet and runs circumferentially to a transition section near the opposite end where it gradually becomes narrower and shallower until becoming flush with the inner cover face. The fuel outlet in the bottom channel is positioned circumferentially 0.degree.-5.degree. beyond the end of and in partial fluid communication with the cover channel so that fuel is expelled smoothly from the cover channel through the fuel outlet.
Abstract:
A fuel pressure regulator is provided. The fuel pressure regulator includes a body forming an inlet and an outlet, a seal element positioned intermediate the inlet and the outlet, an armature positioned to apply force to the seal element, and a solenoid coiled around the armature, wherein excitation of the solenoid causes a change in at least one of a position of the armature relative to the seal element and a force applied by the armature to the seal element to vary a regulated fuel pressure set-point at which fuel flows through the outlet.
Abstract:
An in-tank fuel supply unit is provided for supplying fuel from a fuel tank to an engine. The fuel supply unit generally comprises a fuel delivery module and a jet pump assembly selectively attachable to the fuel delivery module. The fuel delivery module has a housing defining a reservoir and includes a fuel pump for pressurizing fuel in the reservoir. The jet pump assembly has a suction tube defining a suction chamber and a nozzle situated inside the suction chamber. The nozzle receives pressurized fuel from the fuel pump and sprays the fuel from a nozzle tip at high velocity to draw additional fuel into the suction chamber through an inlet formed in the suction tube.
Abstract:
A rotary fuel pump employs pressure balancing features on the non-vaned side of the impeller to provide localized application of fluid forces so that the impeller is more precisely balanced within the pumping chamber. A generally disc-shaped impeller body has an impeller with a body-side surface and a cover-side surface. The cover-side surface defines an impeller flow channel extending circumferentially around the impeller. The impeller includes a plurality of vanes positioned at least partially within the impeller flow channel. The body-side surface has a plurality of discontinuous undercut regions each coaxially aligned with at least a portion of the impeller flow channel. The impeller has a plurality of apertures wherein each aperture connects the impeller flow channel with a respective undercut region, whereby pressure forces against the impeller from the fuel are substantially balanced in the axial direction.
Abstract:
The present invention provides a system for controlling the speed of a motor by altering the magnetic field of the motor. The system includes field modification module, and a motor having field windings and a rotor. The field windings are configured to receive a driving signal that generates a magnetic field causing a rotation of the rotor. The field modification module is proximate the motor and alters the magnetic field in response to an input signal thereby controlling the speed and torque of the rotor.
Abstract:
A fuel sender assembly comprises an in-tank electrical connection to an electric fuel pump that is formed between a socket member and a plug element, in which the plug element includes a terminal that is received in a receptacle in the socket member. The socket element comprises a socket wall that extends about the socket face. The plug element also includes a plug wall that sealingly engages the socket wall to prevent the electrical contact from exposure to fuel vapors within the tank.
Abstract:
A fuel pump for pumping fuel from an inlet port to an outlet port. In one embodiment, a housing made up of a body piece and a cover piece encloses an impeller. The impeller has a vaned periphery and an outer ring connected by spokes. An inlet hole is defined within the cover piece for fuel to enter the pump. An outlet hole is defined within the body piece for fuel to exit the pump into an internal chamber. A first main semicircular shaped channel is defined circumferentially into the cover piece and extends in an annular fashion around the cover piece. The body piece has a second main semicircular channel as well as at least one annular groove. In the preferred embodiment of the invention, there are two annular grooves, one connected directly to the second semicircular channel, and one around the peripheral edge of the body piece at the point where it contacts the cover piece.
Abstract:
A fuel pump assembly 10 including a motor 12, a drive shaft 14 which is rotatably coupled to motor 12, an impeller 16, and a chamber assembly 18. Fuel pump assembly 10 has improved efficiency due to the substantial reduction and/or elimination of frictional contact between impeller 16 and the respective interior surfaces 70, 72 of chamber 18.
Abstract:
A fuel delivery module for an automotive fuel delivery system includes a reservoir and a fuel pump. The fuel pump delivers fuel from the tank to the reservoir via a fuel tank inlet and reservoir outlet and from the reservoir to the engine via a reservoir inlet and engine outlet. The reservoir is formed with a plurality of contaminant traps for collecting contaminants contained in the fuel as the fuel is pumped through the reservoir such that the contaminants settle unto said contaminant traps thereby reducing the amount of contaminants entering the reservoir inlet.