Abstract:
Loop Performance Monitoring (LPM) for DDS loops is described. Even though DDS loops have Intentional Bipolar Violations (BPVs), a Loop Coding Violations (LCVs) detection strategy based on further processing of BPVs is described. By monitoring LCVs a local loop terminating device can determine Bit Error Rate (BER).A system is described by which an Office Channel Unit (OCU) can process LCV information to determine signal quality of the signal over the incoming local loop. If the signal quality falls below a certain threshold, the OCU can cut the loop off from the DDS circuit and send control codes into the network.A system is also described where a Network Interface Unit (NIU) with the LPM system communicates incoming LCV information to the OCU using low speed signalling over the simplex path between the transmit and receive pairs. The OCU monitors incoming LCVs as well, and thus has the information necessary to determine bi-directional BER performance.
Abstract:
A quadrature coder for a two-wire digital loop communication system is described in which data is sampled and quadrature encoded by being divided into two bit streams, one of which comprises every other bit in the original bit stream and the other one comprises the remaining bits. One of the divided bit streams is delayed by 90.degree. from the other. The delayed and undelayed bit streams are then recombined and transmitted over a two-wire loop.
Abstract:
Broadband analog radio-frequency devices can be used to create building blocks for scalable analog signal processors that operate over bandwidths of 50 MHz to 20 GHz or more. Example devices include integrators (transconductors), digitally controlled attenuators, buffers, and scalable summers implemented using deep sub-micron CMOS technology. Because the devices are implemented in CMOS, the ratio of trace/component size to signal wavelength is about the same as that of low-frequency devices implemented in printed circuit boards. Combining this scaling with high gain/high bandwidth enables implementation of feedback and programmability for broadband analog signal processing.
Abstract:
In an embodiment, a circuit includes a variable group delay configured to delay a wideband input signal to obtain a delayed input signal; a wideband operational amplifier configured to determine an error signal based on a difference between the delayed input signal and a linearized power amplifier output; a feedback amplifier configured to amplify the error signal to obtain an amplified error signal; and a directional combiner configured to combine the amplified error signal with the power amplifier output to obtain the linearized power amplifier output.
Abstract:
A system and apparatus including a wireless network architecture that provides broadband data network coverage over an expandable geographic area. A media access control layer is also provided that facilitates access to the broadband wireless network. A high-frequency wireless modem enables high data rate access to the wireless network in a spectrally-efficient manner using SSB modulation. A wideband millimeter-wave antenna includes a cosecant-squared reflector enabling signal propagation between network elements thereby enabling seamless wireless communications. A millimeter-wave polarizer, and a septum polarizer each convert between linear and circular polarization. A cross-shaped horn antenna adapted for circularly polarized signals can also be used in combination with the septum polarizer. A combined horn antenna is fed using a microstrip patch antenna.
Abstract:
A port concentrator communication system which allows a large number of end user stations to share a limited number of trunk lines to a packet switch network is described. Specifically, the system comprises a number of end user stations each coupled to a port concentration intelligent unit, with these units being coupled together in cascade fashion and the end unit in the cascade being coupled to a set of trunk lines leading to a packet switch network. Each of the trunk line ports corresponds to a channel in the DDS DSOB data streams network and in the reverse direction to the set of end user stations. Special code bytes, indicating the status of trunk line ports, appear in the DSOB data streams and play an integral role in the method whereby the port concentration intelligent units associated with the end user stations can request, obtain access to and communicate over, and relinquish trunk lines.
Abstract:
In an embodiment, a circuit includes a variable group delay configured to delay a wideband input signal to obtain a delayed input signal; a wideband operational amplifier configured to determine an error signal based on a difference between the delayed input signal and a linearized power amplifier output; a feedback amplifier configured to amplify the error signal to obtain an amplified error signal; and a directional combiner configured to combine the amplified error signal with the power amplifier output to obtain the linearized power amplifier output.
Abstract:
Present software-defined radios (SDR) employ front end circuits that contain multiple receivers and transmitters for each band of interest, which is inflexible, expensive and power inefficient. A programmable front end circuit is implemented on a CMOS device and is configurable to transmit and receive signals in a wide band of frequencies, thereby providing an adaptable transmitter and receiver operable with current and future wireless networking technologies.
Abstract:
A loop carrier system includes a home local area network having plural telephone modules and a hub coupled to in-home telephone wiring. The telephone modules and the hub communicate voice signals over the in-home wiring in a dedicated frequency band above baseband POTS. The hub converts between voice signals and voice packets and is connected to a network access device for transferring the voice packets from the home local area network to a telecommunications network which routes the voice packets to a gateway. The gateway converts between the voice packets and a circuit format compatible with a local digital voice switch.
Abstract:
A post-equalizer and pre-equalizer circuit for use in communicating between nodes in a pulse amplitude modulated digital communication system is described. The post-equalizer circuit comprises a first variable zero circuit, a second variable circuit, and a gain shaper circuit wherein the gain and frequency location of the zeros in the zero circuits combined with the gain of the gain shaping circuit are simultaneously controlled by a control circuit which generates a control voltage which is a monotonically increasing function of cable loss. The control voltage generates a signal equal to the difference between the equalized signal and the original transmitted signal which is used to vary the resistance of voltage variable resistors in the form of FET's in each of the zero circuits and gain shaper circuits. If the cable loss is above a predetermined value, a pre-equalizer circuit is switched into the transmit path of the communication system and provides a gain, zero and pole at predetermined frequencies which pre-compensates for the extra loss incurred in transmission over length greater than can be equalized by the post-equalizer. Additionally, a bi-quad ACE circuit is described which provides a hyperbolic relationship between the zero frequency location and circuit gain utilizing a cascode amplifier and emitter follower circuit with a feedback loop through a voltage variable resistor.