Abstract:
A vehicle service system having a means for acquiring images of a three-dimensional region of a vehicle wheel assembly tire tread surface. The vehicle service system is configured to process the acquired images to produce a collection of data points corresponding to the spatial position of surface points in the region from which tire tread wear characteristics are identified. The acquired images are further utilized to provide both a graphical and a numerical display to an operator, with the numerical display linked to specifically annotated or indexed points or windows within the graphical display, thereby enabling an operator to quickly identify specific focus points or regions on the tire surface which have been measured at the numerically identified tread depths.
Abstract:
A vehicle wheel service system including a plurality of sensors positioned in proximity to a heavy-duty multi-axle vehicle, to measure angles associated with three or more axles of the vehicle without repositioning the mounting of the sensors after initiating a measurement procedure. Additional sensors, associated with a vehicle reference, such as the vehicle frame axis, are disposed to provide vehicle reference measurement data which is communicated to a processing system. The processing system is configured with software instructions to evaluate the measurement data and to determine various vehicle wheel alignment angle measurements and/or necessary vehicle adjustments for each axle relative to the vehicle reference or to a fixed axle having a determined relationship to the vehicle reference.
Abstract:
A vehicle wheel service system configured with a load roller assembly to apply a generally radial load to a vehicle wheel assembly during rotation, and which is configured with sensors to obtain one or more measurements of lateral forces associated with the vehicle wheel assembly during the loaded rotation, from which a quantified representation of lateral force for the tire of the vehicle wheel assembly is determined.
Abstract:
A set of light-weight adaptor assemblies suitable for use with optical targets, angle sensors, or other instrumentation. A first configuration of adapter assembly within the set is easily secured against the outboard surfaces a large-diameter vehicle wheel assembly having a highly convex raised central hub region, without concern for precise axial alignment or centering, while a second configuration of adapter assembly within the set is easily secured against the outboard surfaces of a large-diameter vehicle wheel assembly having a highly concave recessed central hub region, without concern for precise axial alignment or centering.
Abstract:
Methods and apparatus for a vehicle wheel alignment service procedure and an for acquisition of vehicle measurements, which imparts a gravity-induced rolling movement to a vehicle on a vehicle support structure to transition the vehicle from a first vehicle support surface over a descending roll ramp to a resting position on a second vehicle support surface.
Abstract:
A method and apparatus for enabling a vehicle wheel alignment measurement system to compensate one or more vehicle wheel alignment angles or vehicle body measurements acquired from a vehicle for changes associated with adjustments in the elevation of vertically movable runways of an automotive vehicle lift supporting the vehicle. An initial set of pose measurements are acquired with the movable runways at a stable first elevation. Following an elevation change to the movable runways, a second set of pose measurements are acquired with the movable runways at a second stable elevation. One or more compensation factors used to compensate vehicle wheel alignment angles or vehicle body measurements for changes in the automotive vehicle lift configuration are determined by a comparison of the initial and second sets of pose measurements.
Abstract:
Tire changing machines including force and position sensors facilitating automated detection of wheel rim and tire features by a controller. Dimensional and location information for features of interest may be detected and recorded for use by the controller to perform tire change procedures. Positioning error and malfunctioning machine components, including feedback sensors, may also be detected in an automated manner.
Abstract:
A vehicle service or inspection system including a load roller for applying a radial load to a vehicle wheel assembly consisting of a tire mounted to a rim, with at least one sensor for acquiring measurements of acoustical energy generated by the wheel assembly during loaded rotational movement. The vehicle service or inspection system is configured with a programmed processor to evaluate the acquired measurements to provide a measure of tire road noise, identification of tire defects, and/or identification of sources of noise, vibrations, or acoustical energy on the tire surface such as tire flat spots, cupping, bubbles, embedded foreign objects, or other defects. The processor is further configured with software instructions to utilize the acquired measurements to provide a consumer with a figure of merit associated with the acoustics of the tire undergoing testing.
Abstract:
Methods and apparatus for utilizing vehicle wheel assembly surface profile data acquired by a vehicle wheel service system from a non-contact imaging sensor and a projected pattern of optically distinct elements on the vehicle wheel assembly surface to identify one or more features of the vehicle wheel assembly, to receive operator input, and to facilitate the placement of imbalance correction weights onto the vehicle wheel assembly surface.
Abstract:
A portable powered roller assembly configured to impart a motive force to a wheeled vehicle or structure consists of a roller mounted in a rolling support structure. The roller is rotationally driven by a battery-powered drive unit coupled through a torque multiplying transmission, and is configured for engagement with the circumferential surface of a vehicle wheel. Rotational movement of the roller in engagement with the circumferential surface of the vehicle wheel draws the powered roller assembly towards, and under, the curved circumferential surface of the vehicle wheel, imparting a force to the vehicle wheel which include both a lifting force perpendicular to the supporting surface on which the powered roller is resting, and a motive force parallel to the surface.