Abstract:
A gate driving circuit includes a plurality of stages connected to each other. An m-th stage (‘m’ is a natural number) of the stages includes a pull-up part, a pull-down part, a first holding part and a second holding part. The pull-up part outputs a high voltage of a clock signal as a high voltage of an m-th gate signal in response to a high voltage applied to a first output control part. The pull-down part pulls down the high voltage of the m-th gate signal to a first low voltage in response to a high voltage of an (m+1)-th gate signal. The first holding part holds a voltage applied to the first output control part as a second low voltage having a level lower than the first low voltage. The second holding part holds a low voltage of the m-th gate signal to the first low voltage.
Abstract:
A moving device (70) determines an obstacle virtual existence region (72) of a simple graphic approximating a detected obstacle (71) to detect the obstacle (71) in a real time and determine a smooth avoidance path by calculation, thereby performing collision prediction.
Abstract:
An audio/video (A/V) device having a volume control function for external audio reproduction units by using volume control buttons of a remote controller is provided. The A/V device includes speakers, an audio output port for externally outputting an audio signal, an audio signal processing unit for reproducing and amplifying the audio signal and applying the amplified audio signal to the speakers or the audio output port, a memory unit for storing volume control values, and a control unit for applying to the audio signal processing unit any of the volume control values stored in the memory based on whether the external audio reproduction unit is plugged in the audio output port. The control unit controls the audio signal processing unit to adjust the volume control values for the audio output port by the volume control buttons when the external audio reproduction unit is plugged in the audio output port.
Abstract:
A gate drive circuit includes a plurality of driving stages. An n-th (‘n’ is a natural number) driving stage includes a pull-up part, a carry part, a first pull-down part, a first pull-up/down control part and a second pull-up/down control part. The first pull-up/down control part applies a first power signal of an ON voltage to a control terminal of the pull-up part in a forward direction mode, and applies the first power signal of a second OFF voltage to a control terminal of the pull-up part in a reverse direction mode. The second pull-up/down control part applies a second power signal of the second OFF voltage to the control terminal of the pull-up part in the forward direction mode, and applies the second power signal of the ON voltage to the control terminal of the pull-up part in the reverse direction mode.
Abstract:
A gate drive circuit includes plural stages connected together one after each other. Each of the plural stages includes a circuit transistor, a capacitor part, a first connection part and a second connection part. The circuit transistor outputs the gate signal through a source electrode in response to a control signal applied through a gate electrode. The capacitor part includes a first electrode, a second electrode formed on the first electrode, and a third electrode formed on the second electrode. The first connection part electrically connects the gate electrode of the circuit transistor and the second electrode of the capacitor part. The second connection part electrically connects the source electrode of the circuit transistor and the first electrode of the capacitor part. Thus, an integrated size of a gate drive circuit may be decreased, and a reliability of a gate drive circuit may be enhanced.
Abstract:
The present invention relates to an isoxazoline derivative having the cyclic carboxylic acid hemiketal moiety of formula (1) for use as caspase inhibitor, a process for preparing it, and a pharmaceutical composition comprising it.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
The present invention relates to a novel process for the production of 3-amino-5-fluoro-4-dialkoxypentanoic acid ester used in the precursor of 3-amino-5-fluoro-4-oxopentanoic acid, represented by the following formula (I): wherein R1 and R2 are as defined in the Description.
Abstract:
In a gate drive circuit including stages which are cascaded and which output gate signals each of the stages includes a first node, an output part, a first holding part and a second holding part. A voltage of the first node is converted to a high voltage in response to one of a vertical start signal and a carry signal of one of previous stages. The output part outputs a first clock signal as a gate signal through an output terminal in response to the high voltage of the first node. The first holding part applies a first low voltage to the output terminal, in response to a gate signal output from at least one of following stages. The second holding part applies a second low voltage, which is less than the first low voltage, to the first node in response to a gate signal output from at least one stage among following stages.
Abstract:
A reliability evaluation system comprises a reliability evaluation circuit and a reliability evaluation control circuit. The reliability evaluation circuit includes a stress device array and a stress voltage generating block configured to receive a control voltage, generate stress voltages generated by using two reference voltages, and apply the stress voltages to the unit devices in a stress mode via first I/O lines according to the control voltage. The stress device array includes the unit devices that are matrix-arrayed. Each of the unit devices has a first terminal connected to one of the first I/O lines and a second terminal connected to one of second I/O lines. The reliability evaluation control circuit is configured to generate the control voltage and the two reference voltages, and test reliability of the unit devices by using the first I/O lines and the second I/O lines.