Abstract:
Methods of forming integrated circuit devices use metal CMP slurry compositions having relatively low chemical etch rate and relatively high mechanical polishing rate characteristics. The relatively high mechanical polishing rate characteristics are achieved using relatively high concentrations of mechanical abrasive (e.g., ≧8 wt %) in combination with sufficient quantities of a wetting agent to inhibit micro-scratching of underlying surfaces (e.g., insulating layers, conductive vias, . . . ) being polished. The slurry compositions also include a highly stable metal-propylenediaminetetraacetate (M-PDTA) complex, which may operate to inhibit metal-oxide re-adhesion on the metal surface being polished and/or inhibit oxidation of the metal surface by chelating with the surface.
Abstract:
Provided is an apparatus and method for analyzing contaminants on a wafer. The apparatus includes: a wafer holder for supporting a wafer on which contaminants to be analyzed are located, a laser ablation device for irradiating a laser to the wafer to extract a discrete specimen from the wafer, an analysis cell for collecting a discrete specimen from the surface of the wafer by irradiating the laser, and an analysis device connected to the analysis cell for analyzing contaminants from the collected discrete specimen.
Abstract:
Provided herein are metal detection reagents including at least one ammonium salt of Formula 1: wherein R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, C1-30 alkyl and C3-14 aryl, and X− is independently selected from the group consisting of bromide, chloride, iodide, fluoride, nitrate, phosphate and sulfate and methods of using the metal detection reagents to monitor one or more metal ion levels in a solution.
Abstract:
A method of manufacturing a reference sample substrate for analyzing a metal contamination level includes coating an organic silica solution including metal impurities on a semiconductor substrate and forming an oxide layer on the semiconductor substrate by thermally treating the semiconductor substrate having the coated organic silica solution. The metal impurities are substantially uniformly distributed in the oxide layer and the metal impurities are positioned at predetermined portions of the oxide layer.
Abstract:
Described embodiments provide an X-ray detector and a method for driving the same. The X-ray detector includes: a sensor panel in which a plurality of pixels are defined, the plurality of pixels each including a photodiode for converting light corresponding to incident X-ray into an electric signal, and a switching element connected to one terminal of the photodiode to control the output of the electric signal; a light emitting unit for providing light to the photodiode; and a voltage supply unit connected to the other terminal of the photodiode to selectively supply first and second voltages different from each other.