Abstract:
A variety of small molecule, guanidine-containing molecules capable of acting as MC4-R agonists are provided. The compounds are useful in treating MC4-R mediated diseases when administered to subjects. The compounds have the formula IA and IB. IA and IB have the following structures where Z has the formula shown below and the rest of the variables are defined herein
Abstract:
Described are selectable notch filter circuits comprising at least two different notch filter capabilities, each of which is capable of filtering interference of a designated fundamental frequency and a second harmonic of the designated fundamental frequency from an electrical signal. Each of the notch filters of the circuit is specific for real time filtering of a different designated fundamental frequency and a second harmonic thereof from digitized signal data input into the circuit. The filtering capability of each filter is dictated by control logic, which uses a coefficient set specific for the designated fundamental frequency and harmonics thereof. By using different coefficient sets, different designated fundamental frequencies and at least their second harmonic frequencies can be filtered from digitized signal data input into the circuit. Because the control logic can utilize at a given time any one (or, if desired, none) of the coefficient sets available to it, different interfering fundamental frequencies can be filtered, if and as necessary, from digitized input signal data collected over time at a substantially equivalent sampling rate. Also described are devices including one or more such selectable notch filter circuits, including implantable medical devices such as implantable cardioverter/defibrillators, as well as methods of using such devices.
Abstract:
Methods and apparatus to control electro-mechanical brakes are disclosed. A disclosed example method of controlling a brake actuator comprises receiving a value representative of a velocity of a piston associated with the brake actuator relative to a pressure plate mounted on a wheel, and determining a control input for the brake actuator based on the velocity value.
Abstract:
An electronic device, like a mobile telephone, has a first section and a second section. The first section and second section are coupled together by a mechanical connection, for example a hinge, swivel or sliding connector. Electronic components in the first section are coupled to electronic components in the second section by conductors capable of transferring power between the first and second sections. A current detector is capable of detecting currents, like surface currents, while a controller is responsive to the current detector. A plurality of reactive elements, like capacitors for example, are coupled to a plurality of switches such that the controller may selectively couple any of the plurality of reactive elements to the conductors by actuating a corresponding switch. When the current detector detects a current in excess of a predetermined threshold, the controller alters the complex impedance between the first and second sections by actuating one or more of the switches, thereby coupling one or more of the reactive elements to the conductors.
Abstract:
The cooling system for the nozzle edges includes a chamber containing a cooling medium. First and second elongated plenums are disposed along opposite side edges of each platform. Inlet passages communicate cooling medium from the chamber into each plenum. Outlet passages from each plenum terminate in outlet holes in the side edges of the platform to cool the gap between adjacent nozzle segments. Passageways communicate with each plenum and terminate in film cooling holes to film cool platform surfaces. In each plenum, the inlet passages are not in direct line-of-sight flow communication with the outlet passages and passageways.
Abstract:
A time-division multiplex (TDM) control system for controlling a plurality of devices from a central point includes a transmitter whose output is coupled over a common path to a plurality of receivers respectively located adjacent to the devices. The transmitter provides a repetitive cycle of a predetermined number of time slots during which a control signal is provided at any one or all of the time slots. Each receiver is assigned a given time slot corresponding to one of the time slots in the repetitive cycle of the transmitter, and each receiver is responsive to the control signal during its given time slot. Each receiver is operative to control one of the devices in response to the control signal.
Abstract:
Cerebroprotein hydrolysate is administered intravenously and/or orally to help treat a range of brain injuries and neurodegenerative conditions effecting the brain including Traumatic Brain Injury (TBI), concussions, injuries resulting from automobile accidents, sports injuries, falls that impact the head, accidents and acts of violence that impact the head and brain including injuries incurred from combat related activities, Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, and other neurological conditions that adversely effect the function of the brain and central nervous system. The types of brain injuries and neurodegenerative conditions that may be treated with cerebroprotein hydrolysate range from mild to severe. Cerebroprotein hydrolysate treatment effectively assists the brain in rebuilding neurons, synapses, and neurological tissue by infusing the brain with specific proteins, neuropeptides, and amino acids to assist with brain repair.
Abstract:
A method of rewarding loyalty of a user may include providing a personal terminal to the user, detecting whether the personal terminal is within proximity of an interaction terminal, and based at least in part on the proximity of the personal terminal to the interaction terminal, providing a benefit to the user.