Abstract:
A composition for forming a conductive film, a method for preparing the same, and a cathode ray tube (CRT) employing the conductive film formed using the composition are disclosed. In the composition for forming a conductive film according to the present invention, conductive black pigment particles are bonded to a network of an organic-inorganic composite sol and are uniformly dispersed in the network. Thus, the conductive film prepared using the composition of the present invention is stable even under a change of conditions such as temperature or humidity. Further, a CRT employing the conductive film formed using the conductive composition of the present invention is excellent in view of contrast characteristics, resolution and film properties, and has an improved body color and a good picture image.
Abstract:
An image sensor having different bias voltages is provided. The image sensor may include a plurality of pixels configured to output pixel signals based on a received optical signal, and logic circuits configured to output the pixels signals as image data. The pixels may be formed on a first region of a semiconductor substrate, the first region being substrate biased to a first voltage. The logic circuits may be formed on a second region of the semiconductor substrate different from the first region, the second region being substrate biased to a second voltage different from the first voltage. A full-well capacitance (FWC) of the photodiode may be increased by applying the first voltage, which is a negative (−) voltage, to a photodiode of a pixel to reduce (or, alternatively prevent) a blooming effect.
Abstract:
An image sensor capable of boosting a voltage of a floating diffusion node is provided. The image sensor includes a floating diffusion node and a storage element which are in a semiconductor substrate. The image sensor includes a first light-shielding material formed over the floating diffusion node, and a second light-shielding material formed over the storage diode. The second light-shielding material is separated from the first light-shielding material. The image sensor also includes a first voltage supply line configured to apply a first voltage to the first light-shielding material and a second voltage supply line configured to apply a second voltage lower than the first voltage to the second light-shielding material.
Abstract:
A composite masking system and method for improving the invisibility of high-definition video watermarking. The composite masking system includes a watermark generation module, a mask generation module, and watermark embedment means. The watermark generation module generates a basic watermark pattern using a private key, and generate a watermark pattern by repeatedly extending the basic watermark pattern. The mask generation module generates a Noise Visibility Function (NVF) mask using NVF masking means, an adaptive dithering mask using adaptive dithering masking means, and a contour mask using contour masking means. The watermark embedment means generates a composite mask by multiplying the NVF mask, the adaptive dithering mask and the contour mask together, multiplying the composite mask and the extended watermark pattern together, and embedding the result of the second multiplication in the luminance channel of an original image.
Abstract:
Provided is a pharmaceutical composition for inhibiting apoptosis of neurons or neurodegeneration. The pharmaceutical composition effectively prevents or treats diseases related to apoptosis of neurons or neurodegeneration.
Abstract:
A method of forming a photoelectrode structure includes: disposing a light-scattering layer including a nanowire on a photoanode substrate; and coating the light-scattering layer with an inorganic binder solution to fix the light-scattering layer on the photoanode substrate. Due to the structure of the photoelectrode structure, the adhesive force between the light-scattering layer and the photoanode substrate is enhanced and the photocurrent density is increased.
Abstract:
An electrolyte for a dye-sensitized solar cell, the electrolyte including an organic solvent; a redox derivative; and an additive including a linear carbon chain, wherein the additive has an ionic or non-ionic neutral functional group located at one or more ends of the linear carbon chain. The viscosity of the high-density electrolyte is reduced, whereby the ionic conductivity of the electrolyte is increased, and the leakage of the electrolyte from the dye-sensitized solar cell is prevented. Therefore, a dye-sensitized solar cell including the electrolyte exhibits enhanced durability and efficiency such as in terms of fill factor (FF).
Abstract:
A dye-sensitized solar cell including: a first substrate and a second substrate positioned to face each other; a first electrode layer on the first substrate and comprising a light absorption layer; a second electrode layer on the second substrate to face the first electrode layer and comprising a catalyst layer; an electrolyte between the first substrate and the second substrate; a first reflection layer on one surface of the second substrate; and a phosphor layer on one surface of the second electrode layer, the first reflection layer, or the second substrate, wherein the first reflection layer has a photonic crystal structure in which a plurality of dielectric substances having different refractive indexes are alternately arranged.
Abstract:
A dye-sensitized solar cell including a first electrode, a negative photoelectrode on the first electrode, a light scattering layer on a surface of the negative photoelectrode, a second electrode facing the first electrode with the negative photoelectrode and the light scattering layer therebetween, and an electrolyte between the first electrode and the second electrode. The light scattering layer includes a titanium dioxide nano wire and a titanium dioxide nano particle.