摘要:
A wireless communication receiver improves signal impairment correlation estimation in MIMO/MISO systems by considering different transmit power allocations and different transmit antenna power distributions in its impairment correlation calculations. The receiver may be implemented in according to a variety of architectures, including, but not limited to, Successive Interference Cancellation (SIC) Generalized RAKE (G-RAKE), Joint Detection (JD) G-RAKE, and Minimum Mean Squared Error (MMSE) G-RAKE. Regardless of the particular receiver architecture adopted, the improved impairment correlations may be used to calculate improved (RAKE) signal combining weights and/or improve channel quality estimates for reporting by receivers operating in Wideband CDMA (W-CDMA) systems transmitting HSDPA channels via MIMO or MISO transmitters. A transmitter may be configured to facilitate impairment correlation determinations by wireless communication receivers operating in MIMO/MISO environments, by signaling one or more values, e.g., data-to-pilot signal transmit power ratios and/or transmit antenna power distributions for the data and pilot signals.
摘要:
Channel Quality Indicator (CQI) tables are tailored to one or more cells of interest. Tailoring CQI tables to individual cells permits devices such as radio base stations to more reliably and accurately allocate radio resources to those cells since channel conditions vary from cell to cell. According to one embodiment, a table of CQI values is composed by analyzing information indicating channel quality in a cell of interest and generating at least one table of CQI values tailored to the cell of interest based on the information analyzed. The tailored CQI table may be deployed to another device for use in reporting channel quality information. The device may report channel quality by accessing the tailored CQI and identifying the range of CQI values that includes a channel quality estimate derived by the device. The device generates a channel quality information message based on the identified range of CQI values.
摘要:
A method and apparatus for generating channel quality information, such as may be used for transmit link adaptation, provide different operating modes, such as a first mode that may be used when propagation channel estimates are not reliable, and a second mode that may be used when the propagation channel estimates are reliable. In one or more embodiments, channel quality information is generated using receiver performance information that characterizes receiver performance in terms of a defined channel quality metric, e.g., supported data rates, for different values of receiver input signal quality over a range of propagation channel realizations. Channel quality information can be generated by selecting channel quality metrics according to receiver input signal quality and a desired probability of meeting a defined performance requirement over a range of propagation channel realizations, or by selecting channel quality metrics according to receiver input signal quality and particularized propagation channel realizations.
摘要:
Control channel information is formulated for transmission in orthogonal frequency division multiplexing (OFDM) systems. In an example embodiment, a method entails formulating control channel information for a transmitting device operating in an OFDM system in which a control channel spans n OFDM symbols, with n being an integer. The method includes acts of allocating, creating, and mapping. Control channel data is allocated to at least one set of resource element groups. At least one order for the set of resource element groups is created in accordance with one or more permutation mechanisms that involve at least one interleaving sequence having a low cross-correlation property. The set of resource element groups is mapped to resource elements of the n OFDM symbols of the control channel responsive to the order that is created using the permutation mechanism(s). The permutation mechanisms may include interleaving sequence(s) and/or cyclic shift(s).
摘要:
In one or more embodiments, a method of processing a soft value sequence according to an iterative soft-input-soft-output (SISO) algorithm comprises carrying out sliding-window processing of the soft value sequence in a first iteration using first window placements and in a second iteration using second window placements, and varying the window placements between the first and second iterations. In at least one embodiment, a communication receiver circuit is configured to carry out iterative SISO processing, wherein it processes a soft value sequence using sliding windows, and wherein it varies window placements between one or more iterations. The communication receiver circuit comprises, for example, all or part of a turbo decoding circuit or other type of iterative block decoding circuit, an equalization and decoding circuit, a soft demodulation and decoding circuit, a multi-user detection and decoding circuit, or a multiple-input-multiple-output detection and decoding circuit.
摘要:
A method and apparatus for providing adaptive cyclic redundancy check (CRC) computation is disclosed. A transport block size is determined. Transport block (TB) CRC bits are computed with a first CRC generator when the TB size is less than or equal to a predetermined threshold. TB CRC bits are computed with a second CRC generator when the transport block size is greater than the predetermined threshold. When the TB is greater than the predetermined threshold, the TB is segmented into code blocks (CBs) and CB CRC bits are computed with the first CRC generator. A method and apparatus for handling adaptively cyclic redundancy check (CRC) encoded transport blocks (TBs) is also disclosed. A TB is received. The TB is CRC checked based on a first CRC generator when the TB size is less than or equal to a predetermined threshold. Code blocks of the TB are CRC checked based on the first CRC generator when the TB size is greater than the predetermined threshold. When the TB size is greater than the predetermined threshold, the code blocks are concatenated, and the TB is CRC checked based on a second CRC generator.
摘要:
A transmitter, channel coder, and method for coding and transmitting a sequence of symbols in a digital communication system utilizing soft pilot symbols. In one embodiment, the transmitter transmits a set of soft pilot symbols with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16 QAM or 64 QAM. The transmitter shares the modulation type and location (time/frequency/code) of the soft pilot symbols with a receiver. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols. In another embodiment, soft pilot symbols are inserted by low-level puncturing of channel encoded bits and replacing the punctured bits with known bit patterns.
摘要:
A quadratic permutation polynomial (QPP) interleaver is described for turbo coding and decoding. The QPP interleaver has the form: Π(n)=f1n+f2n2 mod K, where the QPP coefficients f1 and f2. are designed to provide good error performance for a given block length K.
摘要翻译:描述了用于turbo编码和解码的二次置换多项式(QPP)交织器。 QPP交织器具有以下形式:<?in-line-formula description =“In-line Formulas”end =“lead”?> Pi(n)= f <1> n + f &lt;&lt; 2&gt; mod K,<?in-line-formula description =“In-line Formulas”end =“tail”?>其中QPP系数f 1 SUB >和f&gt; 2 SUB>。 被设计为为给定的块长度K提供良好的误差性能。
摘要:
In one or more embodiments, a method of processing a soft value sequence according to an iterative soft-input-soft-output (SISO) algorithm comprises carrying out sliding-window processing of the soft value sequence in a first iteration using first window placements and in a second iteration using second window placements, and varying the window placements between the first and second iterations. In at least one embodiment, a communication receiver circuit is configured to carry out iterative SISO processing, wherein it processes a soft value sequence using sliding windows, and wherein it varies window placements between one or more iterations. The communication receiver circuit comprises, for example, all or part of a turbo decoding circuit or other type of iterative block decoding circuit, an equalization and decoding circuit, a soft demodulation and decoding circuit, a multi-user detection and decoding circuit, or a multiple-input-multiple-output detection and decoding circuit.
摘要:
A method and apparatus for decoding turbo encoded data. A first turbo decoding iteration is performed to produce a most likely sequence of symbols, each symbol having an amplitude value and a positive or negative sign. The sequence of symbols is error checked, and if an error is detected, the apparatus forms a next most likely sequence by reversing the positive or negative sign of the symbol having the smallest amplitude. If an error is again detected, additional sign reversals are performed on symbols with larger amplitudes, and on multiple symbols. Each modification is error checked. If none of the modifications produce an error-free sequence, and a maximum number of modifications are performed, the apparatus performs another turbo decoding iteration to produce another sequence of symbols. The process is then repeated until an error-free sequence is produced or a maximum number of iterations are performed.