Abstract:
A detector module (100) is operable in a cognitive radio device and capable of determining channel occupancy. The detector module comprises a sensor (110) for sensing incumbent signals at a variable sensing threshold, wherein the sensor generates a first occupancy indication indicating whether the channel includes an incumbent signal having a sensing metric above the variable sensing threshold; a geo-location unit (120) for generating a second occupancy indication based on a location of the detector module; and a decision unit (130) for generating an occupancy decision based on both the first occupancy indication and the second occupancy indication.
Abstract:
A wireless system and method including a medium access control (MAC) layer adapted to notify a wireless station of the presence or absence of an incumbent wireless are described.
Abstract:
A method and system for efficiently utilizing frequency spectrum resources is disclosed. The method comprises the steps of determining at least one spectrum opportunity (510), wherein the opportunity is identified by a frequency range and a time duration, determining a set of altered transmission characteristics (515, 517) to allow transmission of a desired signal in the identified frequency range, wherein the altered transmission characteristics avoid interference with signals expected in the frequency range, and transmitting said desired signal using the altered transmission characteristics when the transmission occurs during said time duration. In one aspect of the system, the step of determining at least one opportunity comprises the steps of receiving signals in known frequency ranges, and determining the characteristics of the received signals. The system comprises a receiving unit (1001) for receiving information items regarding at least one receivable signal, a processing unit (862) for determining characteristics of the at least one received signal, a managing unit (864) for altering transmission characteristics of a desired signal based on the determined received signal characteristics, wherein the altered transmission characteristics avoid interference with the received signals and a transmission unit (866) receiving said altered transmission characteristics to transmit said desired signal. In one aspect, the desired signal transmission characteristics are altered in a frequency range/time period to avoid interference with received signals in the frequency range.
Abstract:
An apparatus, system and method are provided for adaptive flow control of layered streaming video over wireless local area networks (WLANs). In one aspect prioritised and adaptive transmission mechanisms are provided based on buffer fullness and discarding visually less important packets so that future visually more important packets can reach the decoder in time. In another aspect, aggregated control is provided for all video applications as well as separate control for each video application.
Abstract:
A distributed MAC protocol is provided that includes a superframe (102) having a slotted Beaconing Period (104) and a data transfer period (103). The provided superframe (102) comprises a plurality of medium access slots (107) and a plurality of medium access slots (107) is assigned to the slotted Beaconing Period (104). The Beaconing Period length (106) may be fixed or variable. The provided Beaconing protocol defines initializing an ad hoc network by means of starting (101) a Beaconing Period (104), joining an existing Beaconing Period (104) of ad hoc network and resolving collisions during the Beaconing Period.
Abstract:
A system and method is provided for incorporating host-device communication in wireless USB (WUSB). A host (101) either uses a multicast Distributed Reservation Protocol (DRP) frame on behalf of connected devices (102) to reserve wireless channel resources, a unicast DRP frame or Enhanced Distributed Channel Access (EDCA) with a Poll Frame. In the case of a unicast DRP frame the number of unicast frames sent for reservation depends on the number of connected devices (102).
Abstract:
A video signal authentication system utilizes selected portions of a video signal to generate authentication codes that are transmitted in association with respective portions of the signal. The video signal preferably is in compressed format and includes synchronizing codes. The data between synchronizing codes preferably is used as discreet portions of the video signal. Each discreet portion is utilized with a selectively known key and a hash-based authentication code generating strategy to generate an authentication code. Each video portion preferably has its own authentication code. The authentication code is appended to the portion of the video signal and transmitted from a first location to the second location. At the second location, the same authentication code generating strategy is performed on the received portion of video data to generate a received authentication code. The transmitted authentication code is then compared to the received authentication code to verify the authenticity of the transmitted portion of the video signal.
Abstract:
A video encoder that allows for the selection of a distortion level, comprising: a selection system for selecting a target distortion level; and a system for determining a quantization parameter q that will ensure compliance with the selected target distortion level, wherein the system includes an algorithm for calculating distortion that utilizes a Gaussian distribution having a variance that is a function of the quantization parameter q. The algorithm is based on a distortion model D(q)=N(a1q2+a2q+a3, b1q2+b2q+b3), wherein N is a Gaussian distribution and a1, a2, a3, b1, b2 and b3 are distortion model parameters.
Abstract:
A system extracts, from uncoded video data, coding parameters that correspond substantially to coding parameters used in a coding operation that was previously performed on the video data. The system generates a histogram for at least one AC frequency band in the uncoded video data and calculates a correlation function for the histogram. A maximum value of the correlation function is then identified, and a coding parameter for the at least one AC frequency band is determined using the maximum value of the correlation function.