Abstract:
The present invention discloses high purity E-1-chloro-3,3,3-trifluoropropene (1233zd(E)) and methods to produce the same. More specifically, the present invention discloses the methods of making 1233zd(E) essentially free of toxic impurities (e.g. 2-chloro-3,3,3-trifluoropropene (1233xf), chlorotetrafluoro-propene (1224), and 3,3,3-trifluoropropyne). The present invention further provides methods for making high purity 1233zd(E) with concentration of 1233xf and 1224 at or below 200 parts per million (ppm) and 3,3,3-trifluoropropyne impurities at or below 20 ppm. Formation of 1233xf impurity can be avoided if pure 1,1,1,3,3-pentachloropropane is used as a starting material. It was also found that formation of 1233xf is avoided if a liquid phase manufacturing process is used.
Abstract:
The present invention relates to an azeotropic or azeotrope-like mixture consisting essentially of 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene and hydrogen fluoride.
Abstract:
Disclosed is a fully integrated process for making 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd(E)), and trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)). The chemistry involves (a) the reaction of 1,1,1,3,3-pentachloropropane (HCC-240fa), or a derivative thereof selected from 1,1,3,3-tetrachloropropene and 1,3,3,3-tetrachloropropene, with anhydrous HF in excess in the presence of a catalyst in a liquid-phase reactor in such a way as to co-produce HCFO-1233zd, HFO-1234ze, HCFC-244fa (3-chloro-1,1,1,3-tetrafluoropropane), and HFC-245fa in a first reactor; (b) the reaction of HCFO-1233zd and HFO-1234ze with HCl in excess in the presence of a catalyst in a second reactor to convert these two olefins into HCFC-243fa and HCFC-244fa, respectively; (c) the reaction of HCFC-243fa and HCFC-244fa over a dehydrochlorination catalyst or in a caustic solution in a third reactor to form HCFO-1233zd and HFO-1234ze; and (d) the reaction of HCFO-1233zd(Z) and HFO-1234ze(Z) in the presence of a catalyst in a fourth reactor to form trans-1233zd and trans-1234ze, respectively.
Abstract:
The disclosed integrated manufacturing process includes a combined liquid phase reaction and purification operation which directly produces trans-1-chloro-3,3,3-trifluoropropene and 3-chloro-1,1,1,3-tetrafluoropropane which is a precursor to the manufacture of trans-1,3,3,3-tetrafluoropropene. The mixture of co-products is easily separated by conventional distillation and 3-chloro-1,1,1,3-tetrafluoropropane is then dehydrochlorinated to produce trans-1,3,3,3-tetrafluoropropene by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrochlorination catalyst.
Abstract:
The present invention provides a method for separating halocarbons. In particular, the invention provides a method for separating halogenated olefin impurities from 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) using a solid adsorbent, particularly activated carbon. More particularly the invention pertains to a method for separating 2-chloro-3,3,3-trifluoro-propene (HCFO-1233xf) from HCFC-244bb, which are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
Abstract:
The invention provides a method for separating halocarbons. In particular, a method for separating 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) from 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) based on differences in melting points of these compounds. More particularly the invention pertains to a method for separating HCFC-244bb from HCFO-1233xf which are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
Abstract:
This invention achieves a catalyst life improvement for the catalyzed vapor phase reaction of 1,1,1,3,3-pentachloropropane with hydrogen fluoride to form 1-chloro-3,3,3-trifluoropropene by introducing an oxygen co-feed into the fluorination reactor. By introduction of an oxygen co-feed to the reactor feed, the catalyst life was extended a minimum of two-fold (2×).
Abstract:
The instant invention relates to a process and method for manufacturing 2,3,3,3-tetrafluoropropene by dehydrohalogenating a reactant stream of 2-chloro-1,1,1,2-tetrafluoropropane that is substantially free from impurities, particularly halogenated propanes, propenes, and propynes.
Abstract:
Disclosed is an integrated manufacturing process to co-produce (E)1-chloro-3,3,3-trifluoropropene, (E)1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoro-propane starting from a single chlorinated hydrocarbon feed stock, 240fa. The process includes a combined liquid or vapor phase reaction/purification operation which directly produces (E)1-chloro-3,3,3-trifluoropropene (1233zd(E)) from 240fa. In the second liquid phase fluorination reactor 1233zd(E) is contacted with HF in the presence of catalyst to produce 1,1,1,3,3-pentafluoropropane (245fa) with high conversion and selectivity. A third reactor is used for dehydrofluorination of 245fa to produce (E)1,3,3,3-tetrafluoropropene (1234ze(E)) by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrofluorination catalyst. This operation may be followed by one or more purification processes to recover the 1234ze(E) product.
Abstract:
The present invention achieves a catalyst life improvement for the catalyzed vapor phase fluorination of a chlorocarbon in the presence of one catalyst and an oxygen feed. Specifically, in one non-limiting embodiment, the instant invention provides the conversion of 1,1,2,3-tetrachloropropene and/or 1,1,1,2,3-pentachloropropane to 2-chloro-3,3,3-trifluoropropene by introduction of a catalyst and oxygen co-feed to the fluorination reactor.