Abstract:
A system and method for securely restoring software program context is presented. A special purpose processor core is included in a heterogeneous processing environment where each processor can access a shared memory. The isolated special purpose processor core includes an isolated local memory. The isolated special purpose processor core receives an identifier corresponding to the secured program. The identifier is used to read an encrypted context of the secured program from the shared memory. The encrypted context is decrypted using an encryption key. The decrypted context is stored in the isolated special purpose processor core's local memory. The secured program's context integrity is verified by using a persistent security data that is retrieved from a secure location, such as a persistent storage register that can only be accessed when the special purpose processor core is running in isolation mode. If the context is verified, the secured program is executed.
Abstract:
A computer implemented method, data processing system, and computer usable code are provided for generation of hardware thermal profiles for a set of processors. Sampling is performed of the thermal states of the set of processors during the execution of a set of workloads to create sampled information. The sampled information and thermal characteristics of the set of processors are combined and a thermal index is generated based on the sampled information and characteristics of the set of processors.
Abstract:
Computational load is balanced across a plurality of processors. Source code subtasks are compiled into byte code subtasks whereby the byte code subtasks are translated into processor-specific object code subtasks at runtime. The processor-type selection is based upon one of three approaches which are 1) a brute force approach, 2) higher-level approach, or 3) processor availability approach. Each object code subtask is loaded in a corresponding processor type for execution. In one embodiment, a compiler stores a pointer in a byte code file that references the location of a byte code subtask. In this embodiment, the byte code subtask is stored in a shared library and, at runtime, a runtime loader uses the pointer to identify the location of the byte code subtask in order to translate the byte code subtask.
Abstract:
Code handling, such as interpreting language instructions or performing “just-in-time” compilation, uses a heterogeneous processing environment that shares a common memory. In a heterogeneous processing environment that includes a plurality of processors, one of the processors is programmed to perform a dedicated code-handling task, such as perform just-in-time compilation or interpretation of interpreted language instructions, such as Java. The other processors request code handling processing that is performed by the dedicated processor. Speed is achieved using a shared memory map so that the dedicated processor can quickly retrieve data provided by one of the other processors.
Abstract:
A computer implemented method and system for the generation of software thermal profiles for applications executed on a set of processors in a simulated environment. Execution of a software program being run on a software simulator is detected and hardware operations for the software program being executed by the set of processors are analyzed to create analyzed information. Then, a thermal index is generated based on the analyzed information.
Abstract:
A method is provided to allow virtual devices that use a plurality of processors in a multiprocessor systems, such as the BE environment. Using this method, a synergistic processing unit (SPU) can either be dedicated to performing a particular function (i.e., audio, video, etc.) or a single SPU can be programmed to perform several functions on behalf of the other processors in the system. The application, preferably running in one of the primary (PU) processors, issues IOCTL commands through device drivers that correspond to SPUs. The kernel managing the primary processors responds by sending an appropriate message to the SPU that is performing the dedicated function. Using this method, an SPU can be virtualized for swapping multiple tasks or dedicated to performing a particular task.
Abstract:
Computational load is balanced across a plurality of processors. Source code subtasks are compiled into byte code subtasks whereby the byte code subtasks are translated into processor-specific object code subtasks at runtime. The processor-type selection is based upon one of three approaches which are 1) a brute force approach, 2) higher-level approach, or 3) processor availability approach. Each object code subtask is loaded in a corresponding processor type for execution. In one embodiment, a compiler stores a pointer in a byte code file that references the location of a byte code subtask. In this embodiment, the byte code subtask is stored in a shared library and, at runtime, a runtime loader uses the pointer to identify the location of the byte code subtask in order to translate the byte code subtask.
Abstract:
Asynchronously traversing a disjoint linked data structure is presented. A synergistic processing unit (SPU) includes a handler that works in conjunction with a memory flow controller (MFC) to traverse a disjoint linked data structure. The handler compares a search value with a node value, and provides the MFC with an effective address of the next node to traverse based upon the comparison. In turn, the MFC retrieves the corresponding node data from system memory and stores the node data in the SPU's local storage area. The MFC stalls processing and sends an asynchronous event interrupt to the SPU which, as a result, instructs the handler to retrieve and compare the latest node data in the local storage area with the search value. The traversal continues until the handler matches the search value with a node value or until the handler determines a failed search.
Abstract:
A program is into at least two object files: one object file for each of the supported processor environments. During compilation, code characteristics, such as data locality, computational intensity, and data parallelism, are analyzed and recorded in the object file. During run time, the code characteristics are combined with runtime considerations, such as the current load on the processors and the size of the data being processed, to arrive at an overall value. The overall value is then used to determine which of the processors will be assigned the task. The values are assigned based on the characteristics of the various processors. For example, if one processor is better at handling intensive computations against large streams of data, programs that are highly computationally intensive and process large quantities of data are weighted in favor of that processor. The corresponding object is then loaded and executed on the assigned processor.
Abstract:
A system and method for using a processor thread as a debugger is presented. A computer system boots up and initiates a debugger thread. The debugger thread loads a robust, debugger operating system and executes the debugger operating system. Once the debugger thread is functioning, the debugger thread invokes an operational thread. In turn, the operational thread loads a primary operating system and may run various applications. While the operational thread executes the primary operating system and the applications, the debugger thread monitors the operational thread for proper functionality. When the operational thread crashes or terminates, the debugger thread retrieves operational data from the operational thread and provides the operational data to a software developer for analysis.