Abstract:
A method for fabricating a semiconductor device includes forming a first conductive layer doped with an impurity for forming a cell junction over a semiconductor substrate, forming a second layer over the first conductive layer, forming a plurality of active regions by etching the second layer and the first conductive layer, the plurality of the active regions being separated from one another by trenches, forming a side contact connected to a sidewall of the first conductive layer, and forming a plurality of metal bit lines each connected to the side contact and filling a portion of each trench.
Abstract:
A method for fabricating a semiconductor device includes forming a structure having first surfaces at a height above a second surface, which is provided between the first surfaces, forming a first silicon layer on the structure, performing a tilt ion implantation process on the first silicon layer to form a crystalline region and an amorphous region, forming a second silicon layer on the amorphous region, removing the second silicon layer and the first silicon layer until a part of the second surface is exposed, thereby forming an etch barrier, and etching using the etch barrier to form an open part that exposes a part of a sidewall of the structure.
Abstract:
A method for fabricating a transistor of a semiconductor device includes: forming a gate pattern over a substrate; forming a junction region by performing an on implantation process onto the substrate at opposite sides of the gate pattern; performing a solid phase epitaxial (SPE) process on the junction region at a temperature approximately ranging from 770° C. to 850° C.; and performing a rapid thermal annealing (RTA) process on the junction region.
Abstract:
A doping method that forms a doped region at a desired location of a three-dimensional (3D) conductive structure, controls the doping depth and doping dose of the doped region relatively easily, has a shallow doping depth, and prevents a floating body effect. A semiconductor device is fabricated using the same doping method. The method includes, forming a conductive structure having a sidewall, exposing a portion of the sidewall of the conductive structure, and forming a doped region in the exposed portion of the sidewall by performing a plasma doping process.
Abstract:
Provided is a method for forming a gate of a non-volatile memory device. A tunneling layer, a charge trapping layer, a blocking layer, and a control gate layer are formed on a semiconductor substrate. A hard mask is formed on the control gate layer. The hard mask defines a region on which a gate is formed. A gate pattern is formed by etching the control gate layer, the blocking layer, the charge trapping layer, and the tunneling layer. A damage compensation layer on a side of the gate pattern is formed using ultra low pressure plasma of a pressure range from approximately 1 mT to approximately 100 mT.
Abstract:
A method of increasing productivity in an organization by sharing praise, encouragement, recognition, and gratitude among members of the organization, wherein the method also provides virtual space for the members to exchange and share inspirational messages.