Abstract:
A method of fixing a developed photographic silver halide material comprising at least 2 silver halide layers sensitized to different regions of the spectrum, comprising placing the material in face-to-face contact with a fixer sheet in the presence of a processing solution and a silver halide solvent which forms a solubilized silver halide species from the undeveloped areas of the material, wherein the fixer sheet contains reducing means capable of forming metallic silver therein from the solubilized silver halide.
Abstract:
A photographic element is disclosed comprised of a sequence of superimposed blue, green and red recording silver halide emulsion layer units at least two of which produce images of the same hue upon processing. The photographic element is additionally comprised of, interposed between the two emulsion layer units, an interlayer unit for transmitting to the emulsion layer unit of the two units which is nearer the support, electromagnetic radiation that this emulsion layer unit is intended to record and capable, after processing, of reflecting electromagnetic radiation within at least one wavelength region. The imagewise exposed photographic element can be photographically processed to produce a silver image in each of the emulsion layer units, and can be reflection scanned utilizing reflection from the interlayer unit to provide a first record of the image information in one of the two emulsion layer units and can be reflection or transmission scanned to provide second and third records of the image information in the other two emulsion layer units. The first, second and third records can be compared to obtain separate blue, green and red exposure records.
Abstract:
A method is disclosed of extracting independent spectral image records from an imagewise exposed photographic element that contains superimposed silver halide exposure recording layer units each containing a latent image derived from a selected region of the spectrum. The photographic element contains N+1 superimposed silver halide exposure recording units. Photographic processing is conducted to produce a silver image in N+1 of the exposure recording units and a dye image distinguishable from other dye images in at least N exposure recording layer units. The photographic element is in one instance scanned in a spectral region of silver absorption and minimal image dye absorption to provide a first image density record, and the photographic element is also in N spectral regions wherein maximum density of a different image dye occurs to provide N additional image density records. Information from the separate image density records is converted to N+1 image records each corresponding to a different latent image in the exposed photographic element.
Abstract:
A process of making opaque grid lines for a color filter array element comprisinga) exposing a photographic element comprising an unhardened gelatin-silver halide emulsion coated on a support to light through a mask which defines the grid pattern, the emulsion being coated at a total dry weight coverage of at least 0.5 g/m.sup.2 ;b) developing the element with a tanning developer to develop the exposed areas of grid lines;c) washing off the undeveloped emulsion leaving the grid line pattern on the element; andd) drying the element to produce open cells on the support divided by opaque lines of silver in hardened gelatin greater than 0.3 .mu.m in height above the support.In a preferred embodiment, the process includes the further steps of:d) coating the cellular element with a polymeric dye-receiving layer; ande) thermally transferring individual dyes to form a color filter array element comprising a repeating mosaic pattern of colorants in a polymeric binder, the pattern being made up of color patches bounded by the opaque lines in a grid pattern.
Abstract:
A color transfer imaging element comprising a support having thereon an imaging layer comprising a thermographic, photothermographic, or electrographic material capable of forming an image which absorbs or scatters light or infrared radiation, and a dye layer from which a dye image can be transferred to an image receiver when the imaging element is overall exposed to radiation that is absorbed or scattered by the imaged areas of the imaging layer, thereby causing imagewise heating of the dye. The dye layer is positioned relative to the other layers so as to allow this imagewise transfer of dye to the image receiver.
Abstract:
Liquid petroleum sulfonates are useful alone or in combination with less lipophilic anionic surfactants in the preparation of dispersions of water-insoluble photographic addenda, such as couplers and ultraviolet absorbers, in hydrophilic colloid compositions. Such dispersions are useful in photographic elements. Crystallization of the addenda is inhibited and, for some addenda, other advantages are obtained.
Abstract:
Benzotriazole compounds employed as development restrainer precursors are described having on one nitrogen atom an alkali-hydrolyzable, N,N-disubstituted carbamoyl group. The compounds may have the following formula: ##STR1## wherein: R.sup.1 and R.sup.2 each represent a substituted or unsubstituted alicyclic, aliphatic, aromatic or heterocyclic moiety, or may be taken together with the nitrogen to which they are attached to form a heterocyclic ring; andR.sup.3, R.sup.4, R.sup.5 and R.sup.6 each represent hydrogen, nitro, lower alkyl, halogen, carbamoyl, sulfamoyl, RCONH-- or RSO.sub.2 NH--, wherein R is lower alkyl or aryl.
Abstract:
Disclosed is a color film comprising (1) a support layer, (2) a light sensitive layer, and (3) a water permeable color filter array (CFA) layer comprising a continuous phase transparent binder containing a random distribution of colored transparent beads, said beads comprising a water-immiscible synthetic polymer or copolymer.
Abstract:
A method is disclosed of obtaining from an imagewise exposed photographic element separate records of the imagewise exposure to each of the blue, green and red portions of the spectrum comprising photographically processing an imagewise exposed photographic element comprised of a sequence of superimposed blue, green and red recording silver halide emulsion layer units that produce images of the same hue upon processing. A first interlayer overlies the emulsion layer unit nearest the support for transmitting to it imagewise exposing radiation this emulsion layer unit is intended to record and for absorbing after photographic processing scanning radiation within at least one wavelength region. A second interlayer underlies the emulsion layer unit farthest from the support for transmitting to the underlying emulsion layer units exposing radiation they are intended to record and for absorbing after photographic processing scanning radiation within at least one wavelength region. The imagewise exposed photographic element is photographically processed to produce a reflective image in each of the emulsion layer units and is reflection scanned utilizing the absorption of the first and second interlayers to provide the image information in two of the emulsion layer units. The photographic element is scanned through the interlayers and all of the emulsion layer units to provide a spectrally undifferentiated third record of the combined images in all of the emulsion layer units. The first, second and third records are compared to obtain separate blue, green and red exposure records. In the photographic elements of the invention the interlayers remain or become light absorbing after photographic processing.
Abstract:
A method is disclosed of obtaining from an imagewise exposed photographic element separate records of the imagewise exposure to each of the blue, green and red portions of the spectrum comprising photographically processing an imagewise exposed photographic element comprised of a sequence of superimposed blue, green and red recording silver halide emulsion layer units that produce images of the same hue upon processing (e.g., units lacking a dye-forming coupler). A first interlayer unit overlies the emulsion layer unit nearest the support and is capable of transmitting to it imagewise exposing radiation this emulsion layer unit is intended to record. A second interlayer unit underlies the emulsion layer unit farthest from the support and is capable of transmitting to the emulsion layer units lying nearer the support imagewise exposing radiation these emulsion layer units are intended to record. The imagewise exposed photographic element is photographically processed to produce a silver image in each of the emulsion layer units. After photographic processing one of the interlayer units is capable of absorbing electromagnetic radiation within at least one wavelength region and emitting within a longer wavelength region, and the remaining of the first and second interlayer units is capable of reflecting or absorbing electromagnetic radiation within at least one wavelength region. The photographic element is scanned utilizing emission from one of the interlayer units to provide a first record of the image information in one of the first and last emulsion layer units and is scanned utilizing reflection or absorption of the remaining interlayer unit to provide a second record of the image information in one other of the emulsion layer units. Additionally, the photographic element is scanned through the first and second interlayer units and all of the emulsion layer units to provide a spectrally undifferentiated third record of the combined images in all of the emulsion layer units. The first, second and third records are compared to obtain separate blue, green and red exposure records.