Abstract:
There is provided a method for use in a user equipment when the user equipment is in idle mode or any other low activity state, and when the user equipment bandwidth is smaller than the cell transmission bandwidth. The method comprises the steps of determining a paging position of the user equipment in the frequency domain; receiving, from the network, paging information within the user equipment reception bandwidth; and changing, if indicated by the network, the paging position of the user equipment within the cell transmission bandwidth.
Abstract:
A network node determines one or more parameters related to a Specific Absorption Rate (SAR) target, where SAR is a measure of a maximum energy or power absorbed by a unit of mass of tissue exposed to radio frequency (RF) electromagnetic field (EMF) radiation generated as a result of radio transmissions generated by a UE. The network node generates content for a message for transmission to the UE including the determined one or more SAR-related parameters to be applied by a transmitter in the UE. Based on those one or more SAR-related parameters, the UE determines and implements an action in order to meet the SAR target. Other example embodiments permit the UE to determine the SAR-related parameters in other ways.
Abstract:
The invention relates to methods and devices for supporting configuration of a measurement gap pattern for a user equipment (91) requiring measurement gaps for performing an inter-frequency measurement. A radio network node (81) receives an indication (85) from the user equipment (91) that the user equipment (91) is going to perform an inter-frequency measurement for positioning, which inter-frequency measurement requires measurement gaps. The radio network node (81) may determine a measurement gap pattern for performing the inter-frequency measurement and may signal, to the user equipment (91), information (86) to initiate use of the determined measurement gap pattern in the user equipment (91). Alternatively the user equipment (91) configures the measurement gap pattern itself based on a set of pre-defined rules.
Abstract:
Embodiments herein relate to a user equipment and a radio network node, as well as to methods therein. The method in the radio network node relates to the control of resource allocation for device-to-device (D2D) communications in a communications network. The network comprises the network node, a first user equipment (UE), and a second UE, wherein at least one of the first and second UEs is a first D2D capable UE. The method comprises configuring the second UE to transmit a reference signal, transmitting configuration information relating to the second UE to the first UE, receiving a measurement result of the measurement performed by the first UE on the transmitted reference signal, and performing one or more radio operation task for a D2D communication between the first D2D capable UE and a second D2D communication capable UE based on the received measurement result.
Abstract:
Embodiments relate to device-to-device (D2D) communications in a communications network (1), wherein the communications network (1) comprises a first user equipment (10), a first radio network node (14) serving the first user equipment (10), a second user equipment (12). and a D2D capable radio network node (18,18). The first user equipment (TO) is configured to recognize a second user equipment (12) to have a D2D communication with and to perform a cell change from the first radio network node (14) to the D2D capable radio network node (16,18), when the first radio network node (14) does not have D2D capability.
Abstract:
The present invention relates to a method and arrangement for switching between different modes in a communications network. The network comprises a number of transmit and a number of receive antennas, said modes comprising a single user mode and a multiple user mode. The method including the steps of: transmitting reference signals or predetermined sequences corresponding to both said modes comprising respective weighting matrices for said modes during a preparation phase, which comprises of one or more transmission time intervals (TTI), transmitting on a common channel, signalling information indicating start and duration of said preparation phase to all receiving equipments in a reception area.
Abstract:
A radio base station generates a congestion status flag, based on measured resource usage in its cell, and based on performance of sessions in the cell. The flag may be a one bit, or a small number of bits, indicating whether the base station is congested. The flag can be sent to neighboring radio base stations, for use in determining whether to perform handovers to that radio base station. The flag generated in a radio base station, and the flags generated in neighboring radio base stations, can also be sent to user equipment in a cell.
Abstract:
The present invention provides a method and apparatus for autonomously detecting whether a reference signal within an OFDM signal transmitted by a remote transmitter is or is not muted for a given transmission time. Muting or puncturing may be applied to all or only a portion of the reference signal. The method, which may be carried out in an appropriately configured radio apparatus, includes receiving the OFDM signal and calculating a first comparison metric from signal samples of the OFDM signal corresponding to a first set of resource elements of the OFDM signal, and calculating a second comparison metric from signal samples of the OFDM signal corresponding to a second set of resource elements of the OFDM signal. The method continues with determining whether the reference signal is or is not muted for the given transmission time, by comparing the first and second comparison metrics, and foregoing or performing reference signal measurements responsive to determining that the reference signal is or is not muted.
Abstract:
In its various aspects, the present invention addresses the many challenges associated with making timing measurements involving multifarious radio links. Such measurements are referred to herein as “enhanced” to connote that such timing determinations are being made across multifarious radio links. Here, a radio link will be understood as connecting two radio nodes, and two radio links are considered to be multifarious with respect to each other if they are opposite in terms of uplink and downlink transmit directions, and further if they are associated with different cell identifiers and/or if the two links are between different pairs of radio nodes. In this context, the teachings herein disclose the sharing of “enhanced timing measurement” capability information, e.g., between radio nodes and positioning nodes. Such information indicates the enhanced timing measurement capability of a radio node. Sharing such information enables another node, e.g., a positioning node, to determine an enhanced timing measurement configuration to be used by a radio node. Further, additional teachings herein disclose advantageous configurations for making enhanced timing measurements, and techniques for compensating timing measurements determined from multifarious radio links, e.g., compensating for frequency-dependent propagation time differences.
Abstract:
The present invention relates to a method, a base station and an interface for handover in a wireless communication network. Handover is initiated when the signal quality falls below a predetermined value. Random access serves as an uplink procedure to enable the UE to make handover from a first base station (eNodeB) to a suitable second base station (eNodeB). In the present invention, random access parameters are exchanged between second and first base station before said first base station signals said random access parameters to said user equipment.