Abstract:
A method of communications for a coexisting wireless network including a wireless combination (combo) device communicating via a first wireless network and second wireless network, and a first wireless device on the first network. During an activity interval for the second network (i) a transmit (Tx) time interval is longer in duration than a Tx packet duration and/or (ii) a receive (Rx) time interval is longer in duration than a Rx packet duration to provide remaining time. A frame aggregated packet is used on the first network that includes a plurality of data packets and a dummy packet or spoofing so that the frame aggregated packet is extended in time or indicates an extension sufficient to overlap the Tx time interval or Rx time interval. The combo device transmits or receives an acknowledgement (ACK) on the first network during the activity interval for the second wireless network.
Abstract:
A method of communications in a network having plurality of nodes including a base node (BN) and a plurality of levels (i) each including at least one service node (SN). The number (Ni(t)) of SNs registered in each of a plurality of i are determined. The current Keep Alive timer out (KA_TO) value for a KA timer at the BN is dynamically adjusted to an updated KA_TO value based on Ni(t) and i. Dynamically adjusting KA_TO values reduces the KA message overhead the network compared to known KA_TO value implementations.
Abstract:
This invention employs an inherent tradeoff in a radio bearer dependent data handling method for intra-E-UTRA handoffs. For user equipment using real time data, the source node forwards to the target node not yet acknowledged real time service data units and disconnects. This makes the handoff latency short at the expense of data traffic between nodes. For user equipment not needing real time data, the source node continues to receive user equipment acknowledgements during a time out period and only forwards service data units acknowledged during the time out period. This reduces X2 interface traffic between the source and target nodes but extends the handoff latency.
Abstract:
A method of communicating in a network having a plurality of nodes including a base node (BN), and a plurality of service nodes (SNs) having at least one switch node (SW) and at least one terminal node (TN). The method includes at least one of a) a first SN from the plurality of SNs receiving (i) a data/ALV_B/ACK frame from the BN or (ii) a beacon from the BN or SW, and restarting a first KA timer at the first SN upon (i) or (ii), and b) restarting an ALV_S timer at the BN for the first SN upon receiving a data/ALV_S/ACK frame from the first SN.
Abstract:
Segmented frames of data may be transmitted from a transmitting device using conflict free slots (CFS) within a carrier sense multiple access with collision avoidance (CSMA/CA) protocol on a noisy media. At a receiver, a segmented frame of data is received. The data is represented by a plurality of tones. If requested by the transmitter, a tone map response command is prepared that specifies a set of optimized tone map parameters by analyzing the received frame of data. Any previously determined tone map response commands to the transmitting device are deleted. A sequence of frame segments may be received in conflict free slots, but only one tone map response is transmitted to the transmitting device after receiving the entire sequence of frame segments.
Abstract:
An integrated circuit includes logic configured to determine a communication schedule of a device configured to perform Wi-Fi communications in a first Basic Service Set (BSS) network and in a second BSS network. The logic determines the communication schedule based at least in part on a first BSS network communication load of the device and on a second BSS network communication load of the device. The communication schedule defines the service time allocation of the device in the first BSS network and the service time allocation of the device in the second BSS network. At least one of the first and the second BSS networks is supportive of a peer-to-peer connection.
Abstract:
A method for multi-tone mask communication including generating, by a power line communication router, a superframe to include a plurality of beacons corresponding to a plurality of tone masks. Each beacon also defining a plurality of tone masks, a contention access region, a contention free period, an inter router communication slot. The superframe also includes at least one of the beacons also defining an idle time during which nodes receiving the superframe are to transition to a low power mode. Transmitting the superframe to a power line communication node.
Abstract:
Method and apparatus for communicating via a network. In one embodiment, a device for communicating via a network includes a medium access controller (MAC). The MAC is configured to apply a contention window for collision avoidance on the network, and to determine whether the network is free for use on expiration of a time value of the contention window. The MAC is also configured to initiate a transmission based on a determination that the network is free for use. The MAC is further configured to increase, in accordance with a predetermined probability value, the time value of the contention window based on: the transmission being successful; and the time value of the contention window being a minimum contention window time value. The probability value establishes the likelihood of the MAC increasing the time value of the contention window with respect to successful transmissions with the minimum contention window time value.
Abstract:
Systems and methods for Carrier Sense Multiple Access (CSMA) and collision detection using a noise model are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include receiving a signal via a communications channel in a PLC network, determining a feature of the signal, comparing the feature of the signal with a corresponding feature of a cyclostationary noise model, and taking a predetermined action based, at least in part, upon the comparison. In some implementations, taking the predetermined action may include determining whether to backoff or to transmit a packet over the communications channel. In other implementations, taking the predetermined action may include determining whether an error is due to a packet collision or due to a low quality of the communications channel.
Abstract:
A method of powerline communications including a first node and at least a second node on a powerline communications (PLC) channel in a PLC network. The first node sends a physical layer (PHY) data frame on the PLC channel including a preamble, a PHY header, a MAC header and a MAC payload. The MAC header includes a Cyclic Redundancy Check (CRC) field (MH-CRC field). The second node receives the data frame, parses the MAC header to reach the MH-CRC field, and performs CRC verification using the MH-CRC field to verify the MAC header. If the CRC verification is successful, (i) the second node parses another portion of the MAC header to identify a destination address of the data frame and (ii) to determine whether the data frame is intended for the second node from the destination address.