Abstract:
A method of powerline communications including a first node and at least a second node on a powerline communications (PLC) channel in a PLC network. The first node sends a physical layer (PHY) data frame on the PLC channel including a preamble, a PHY header, a MAC header and a MAC payload. The MAC header includes a Cyclic Redundancy Check (CRC) field (MH-CRC field). The second node receives the data frame, parses the MAC header to reach the MH-CRC field, and performs CRC verification using the MH-CRC field to verify the MAC header. If the CRC verification is successful, (i) the second node parses another portion of the MAC header to identify a destination address of the data frame and (ii) to determine whether the data frame is intended for the second node from the destination address.
Abstract:
An algorithm for the promotion of terminal nodes to switch nodes in a PLC network reduces overall network overhead and collisions, while ensuring the appropriate selection of a switch node and minimizing the number of levels in a PLC network. It also ensures that the terminal nodes with appropriate signal-to-noise ratios (SNRs) are promoted. It is desirable to have a network with fewer levels. The disclosed approach favors the nodes that are closer to the DC to promote them as switch nodes. This is achieved by waiting for a smaller number of PNPDUs for a node that is closer to the DC in comparison to a node that is farther away from the DC.
Abstract:
Systems and methods for designing, using, and/or implementing superframe coordination in beacon-enabled networks are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include implementing a Media Access Control (MAC) superframe using a communication device. The MAC superframe may include a plurality of beacon slots, a plurality of Contention Access Period (CAP) slots following the plurality of beacon slots, a Contention Free Period (CFP) poll access slot following the plurality of CAP slots, a CFP slot following the CFP poll access slot, an inactivity period following the CFP slot, a beacon region following the inactivity period, and a communication slot following the beacon region. The method may also include communicating with another communication device using the MAC superframe.
Abstract:
Systems and methods for designing, using, and/or implementing beacon-enabled communications for variable payload transfers are described. In various embodiments, these systems and methods may be applicable to power line communications (PLC). For example, a method may include implementing a superframe having a plurality of beacon slots, a plurality of intermediate slots following the beacon slots, and a poll-based Contention Free Period (CFP) slot following the intermediate slots. Each of the beacon slots and each of the intermediate slots may correspond to a respective one of a plurality of frequency subbands, and the poll-based CFP slot may correspond to a combination of the plurality of frequency subbands. The method may also include receiving a poll request over a first of the plurality of frequency subbands during the poll-based CFP slot, and then transmitting a data packet over a second of the plurality of frequency subbands during the poll-based CFP slot.
Abstract:
Phase detection between service nodes in a as “PRIME” (“PoweRline Intelligent Metering Evolution”) communications network, in which the service nodes are connected to one phase of a three-phase power distribution network. A service node joining a sub-network receives packet data units from other service nodes in the sub-network, including those that can potentially serve as a switch node to which the joining service node can register. The joining service node measures an elapsed time between a zero crossing of the AC power waveform at its phase and the start of a frame in the received packet data units. This elapsed time is compared with a similar zero crossing gap communicated by other service nodes in the packet data units, to identify the relative phases to which the two service nodes are connected.
Abstract:
Segmented frames of data may be transmitted from a transmitting device using conflict free slots (CFS) within a carrier sense multiple access with collision avoidance (CSMA/CA) protocol on a noisy media. At a receiver, a segmented frame of data is received. The data is represented by a plurality of tones. If requested by the transmitter, a tone map response command is prepared that specifies a set of optimized tone map parameters by analyzing the received frame of data. Any previously determined tone map response commands to the transmitting device are deleted. A sequence of frame segments may be received in conflict free slots, but only one tone map response is transmitted to the transmitting device after receiving the entire sequence of frame segments.
Abstract:
Systems and methods for beacon selection in communication networks are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include performing, using a terminal device deployed in a communications network, receiving a beacon transmitted by a switch device within the communications network and, in response to the terminal device having had a previous connection with the switch device, determining a connection time of the previous connection. The method may also include performing at least one of: adding the switch device to a blacklist in response to the connection time being smaller than a first threshold value, or selecting the switch device for subsequent communication in response to the connection time being greater than a second threshold value.
Abstract:
Systems and methods for enhanced carrier sense multiple access (CSMA) protocols are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include attempting to access a communications channel to transmit a frame after a backoff time proportional to a randomly generated number within a contention window (CW), the CW having an initial value carried over from a previous transmission of a different frame. Additionally or alternatively, some of techniques described herein may facilitate the spreading of the time over which devices attempt to transmit packets, thereby reducing the probability of collisions using, for example, Additive Decrease Multiplicative Increase (ADMI) mechanisms.
Abstract:
Systems and methods for beacon selection in communication networks are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include performing, using a terminal device deployed in a communications network, receiving a beacon transmitted by a switch device within the communications network and, in response to the terminal device having had a previous connection with the switch device, determining a connection time of the previous connection. The method may also include performing at least one of: adding the switch device to a blacklist in response to the connection time being smaller than a first threshold value, or selecting the switch device for subsequent communication in response to the connection time being greater than a second threshold value.
Abstract:
A method of powerline communications including a first node and at least a second node on a PLC channel in a PLC network. The first node sends a physical layer (PHY) data frame on the PLC channel including a preamble, PHY header, a MAC header and a MAC payload. The PHY header includes a destination address field having a destination address therein. The second node receives the data frame. The second node compares its network address to the destination address before decoding the MAC header and MAC payload, providing power savings by allowing the second node to not decode the MAC header or MAC payload if its network address does not match the destination address in the PHY header of the data frame.