Abstract:
An optical fibre is fixed between a clamp and a piezo-electric translation stage. An argon ion laser emitting at 514.5 nm is used to write Bragg gratings in the fibre. A different longitudinal stress is applied to the fibre before optically writing each Bragg grating. The fibre when unstressed will have a Bragg grating of different peak reflectivity corresponding to the number of different applied stresses.
Abstract:
This invention relates to the modifying or stripping of primary or secondary coatings on optical fibres by the application of heat such that the coating is entirely or partially removed from the surface over a given length of an optical fibre while a tension is applied in the fibre. Also a clamp to hold the optical fibre when tension is applied.
Abstract:
Methods for cooling fluorescent material are provided. A first method includes providing a sample of the material having an elongated direction of light propagation, exhibiting fluorescence at a mean fluorescence wavelength and capable of emitting superradiant pulses with a formation delay time. The method then involves generating a pump pulsed laser beam having a wavelength longer than the mean fluorescence wavelength, a pump power at which superradiant pulses are emitted and a pulse duration shorter than the formation delay time. The pulses are directed onto the sample along the direction of light propagation to produce the superradiant pulses in an anti-Stokes process inducing a cooling of the sample. A second laser cooling method includes a combination of a traditional anti-Stokes cooling cycle and an upconversion cooling cycle, wherein the two cooling cycles act cooperatively to cool the sample.
Abstract:
The present invention is concerned with a process for fabricating a buried optical waveguide, comprising providing a multi-layer piece of material having a waveguide core layer, generating a laser beam and producing by ablation at least two trenches by applying the laser beam onto the multi-layer piece of material. The two trenches extend through the multi-layer piece of material including the core layer. Upon the ablation, melted material from the multi-layer piece is produced and the core layer is encapsulated between the two trenches with the melted material to produce the buried optical waveguide in the multi-layer piece of material. The present invention also relates to a buried optical waveguide comprising a multi-layer piece of material having a waveguide core layer, at least two trenches laser ablated through the multi-layer piece of material including the core layer and encapsulating material having melted from the multi-layer piece upon laser ablation and leaked to cover and therefore encapsulate the core layer in the at least two trenches to thereby form the buried optical waveguide.
Abstract:
A device for recording a refractive index pattern in a photosensitive optical fiber includes a rotary disc formed with a phase mask in a circular pattern, which is rotated by an axis. The phase mask is illuminated with laser light in a region so that a moving interference pattern is formed. The optical fiber is moved along a path in synchronism with the moving interference pattern so that the pattern becomes recorded in the fiber. The pattern can be formed continuously over long fiber lengths, e.g., of the order of one meter.
Abstract:
It has been demonstrated that B containing glasses are sensitive to radiation in the band 225-275 nm and, therefore, B2O3 glasses are particularly adapted to receive refractive index modulation, e.g., to make reflection gratings. Glasses containing SiO2 and B2O3 are particularly suitable when the grating is to be localized in the cladding of a fiber. Glasses containing SiO2, GeO2, and B2O3 are suitable when the grating is in the path region of a waveguide, e.g., in the core of a fiber.
Abstract translation:已经证明含B玻璃对225-275nm波段的辐射敏感,因此B 2 O 3玻璃特别适于接收折射率调制,例如制造反射光栅。 当光栅定位在纤维的包层中时,含有SiO 2和B 2 O 3的玻璃特别适合。 当光栅位于波导的路径区域中时,例如在纤维的芯中,含有SiO 2,GeO 2和B 2 O 3的玻璃是合适的。
Abstract:
An optical modulator includes a bi-moded fiber for supporting first and second different optical transmission modes, coupled between input and output single mode fibers. The two modes in the bi-moded fiber interfere and the intensity of the radiation that passes to the single mode output fiber is a function of the relative phases of the first and second modes. The bi-moded fiber is electrically poled and is provided with modulating electrodes. When a modulating voltage from a modulating source is applied to the electrodes, the refractive index of the waveguide for the first transmission mode is altered relative to the refractive index of the waveguide for the second mode such as to change the phase difference between the modes at the entrance to the output fiber so as to control the intensity of optical radiation that passes through the output fiber.
Abstract:
A resonant laser device including first and second reflectors defining an optical cavity with given optical resonance characteristics. The laser device including a laser active material in a first optical fiber disposed between the reflectors in the cavity and a second photosensitive optical fiber coupled to the cavity. One of the reflector being a refractive index grating formed in the second fiber such that the laser operates with a selected predetermined wavelength and the laser being tuned to a different wavelength by exposing the second fiber to a second spatially periodic pattern of optical radiation such that the second pattern becomes recorded in the second optical fiber.
Abstract:
A laser having two feedback elements at least one which is wavelength selective, is provided with a demountable optical connector located between the gain medium of the laser and the wavelength selective feedback element. An optical waveguide is utilized to direct optical radiation between the demountable optical connector and the wavelength selective feedback element. The demountable optical connector, for example, a mechanical fibre connector allows the wavelength selective feedback element, for example, a fibre grating, to be exchanged cheaply, simply and quickly, and thus allows the wavelength of operation of the laser to be altered.
Abstract:
A filter has a preselected attenuation/wavelength characteristic, in which spatially separated parts of the filter attenuate different wavelengths. The spatially-separated parts have different attenuation characteristics to attenuate different wavelengths in a predetermined manner to provide a selected attenuation/wavelength characteristic. In one arrangement an interference type filter includes a grating, the pitch of which varies spatially. In one instance, the structure to determine the proportion of radiation subject to interference includes a grating of spatially-varying effectiveness, but alternatively it may include an attenuation filter, the attenuation effect of the attenuation layer varying spatially. In another arrangement, the filter may include structure to separate received radiation into a spatially-disposed spectrum, and to attenuate different parts of the spatially-disposed spectrum in such a manner as to provide the selected attenuation/wavelength characteristic.