Abstract:
Method of processing a workpiece comprising (a) providing a tool and a workpiece, wherein the workpiece has an initial shape; (b) placing the workpiece and the tool in contact to form an interface, applying force to the tool and/or the workpiece, and moving the tool and/or the workpiece to effect a change in the initial shape of the workpiece; (c) applying a lubricant to any area on a surface of the tool and/or to any area on a surface of the workpiece while the workpiece and the tool are in contact; and (d) applying a cryogenic fluid to any area on the surface of the tool and/or to any area on the surface of the workpiece while the workpiece and the tool are in contact.
Abstract:
This invention is a method and apparatus for cutting a workpiece which may have interruptions, with a cutting insert having a cutting edge, where the cutting insert is held in a tool holder and is optionally supported by a shim. Coolant, which may contain liquid nitrogen, is introduced through a passageway to a cooling passage located near the cutting edge. The cooling passage may be located either under, behind, or under and behind the cutting edge. Coolant impacts the wall surfaces of the cooling passage near the cutting edge where it is partly evaporated thereby cooling the cutting insert.
Abstract:
This invention is directed to a tribological apparatus and method incorporating a ball, a support, and means for maintaining a substantially constant force between the ball and a test surface. The ball rolls against the rotating test surface producing a wear track. Analysis relating to wear and fatigue can be performed on the test surface subsequent to producing the wear track.
Abstract:
A tool holder that is adapted to break chips during a cutting operation is disclosed. The tool holder comprises a shank and a head. The shank is adapted to be received by a cutting machine. A head is provided with a pocket for receiving a cutting insert. The head has a flank surface. A chip breaker is provided on the flank surface adjacent the pocket. A clamp is provided for retaining the cutting insert in the pocket. A method for breaking chips comprises the steps of providing a chip breaker on the head of a tool holder adjacent a cutting insert and directing a chip into the chip breaker.
Abstract:
A fluid spray device system (1) that maintains a resultant fluid discharge, or a material onto which the resultant fluid is discharged, within a predetermined range of a set-point temperature by regulating the flow rate of a throttling gas using a proportional valve (22). The resultant fluid has throttling gas and cryogenic fluid components. Both the throttling gas and cryogenic fluid are preferably supplied from a single tank (11) and the cryogenic fluid supply is pressure-regulated and includes a triaxial delivery hose (33) having a return line with a back-pressure regulator (54).
Abstract:
A seal testing apparatus includes a clamp assembly which receives, secures and rotates a piston and seal assembly, a mandrel which extends into the seal assembly and supports a guide which carries a spring biased sensing probe or tooth which is oriented along the axis of the mandrel. In another embodiment, the components are the similar except that the probe or tooth is disposed in the mandrel and extends circumferentially. In both embodiments, data from an optical, laser or acoustic sensor is analyzed to determine the integrity of the piston seal. Yet another embodiment includes an arbor which rotates the seal and an adjacent contra-rotating cylinder having a conical mirror. As the seal, arbor and cylinder rotate, light reflected off the mirror and the seal, and returned to the mirror and a sensor provide data which is again analyzed to determine the integrity of the piston seal.
Abstract:
A method of determining the accuracy and repeatability of leak testing instrumentation comprises the following steps: providing a two chamber vessel having an access port and a flow controlling reference orifice associated with each chamber and a third reference orifice communicating between the two chambers, providing a leak testing device and connecting such leak testing device first to one of such ports, pressurizing the associated chamber and, with the associated orifice open, observing and recording the pressure measured by the leak testing device under test as a function of time. The second test repeats this activity with the other chamber and the other orifice. A third test is undertaken with the third orifice open. One of the chambers is smaller and incorporates a smaller orifice and the other chamber is larger and incorporates a larger orifice thus achieving leak testing under different conditions.
Abstract:
Described herein is an apparatus and method for providing an inerting gas during the application of soldering to a work piece. In one aspect, there is provided an apparatus that is placed atop of a solder reservoir and comprises a plurality of porous tubes that are in fluid communication with an inerting gas. In another aspect, there is provided a method for providing an inerting gas to a wave soldering apparatus comprising the steps of, among other things, placing an apparatus atop at least one edge of the solder reservoir wherein the apparatus comprises a plurality of tubes comprising one or more openings in fluid communication with an inerting gas source. In a further aspect, at least one of the tubes comprises a non-stick coating or is comprised of a porous non-stick material such as a sleeve.
Abstract:
Described herein is an apparatus and method for providing an inerting gas during the application of soldering to a work piece. In one aspect, there is provided an apparatus that is placed atop of a solder reservoir and comprises a plurality of porous tubes that are in fluid communication with an inerting gas. In another aspect, there is provided a method for providing an inerting gas to a wave soldering apparatus comprising the steps of, among other things, placing an apparatus atop at least one edge of the solder reservoir wherein the apparatus comprises a plurality of tubes comprising one or more openings in fluid communication with an inerting gas source. In a further aspect, at least one of the tubes comprises a non-stick coating or is comprised of a porous non-stick material such as a sleeve.
Abstract:
Described herein are a method and an apparatus for removing metal oxides from a substrate surface within a target area. In one particular embodiment, the method and apparatus has an energizing electrode which has an array of protruding conductive tips that are electrically connected by a conductive wire and separated into a first electrically connected group and a second electrically connected group wherein at least a portion of the conductive tips are activated by a DC voltage source that is negatively biased to generate electrons within the target area that attach to at least a portion of a reducing gas that is present in the target area to form a negatively charged reducing gas that contacts the treating surface to reduce the metal oxides on the treating surface of the substrate.