Abstract:
A plurality of input digital pixel images, having differing pixel array sizes, are scaled to a plurality of common pixel dimension input images based on a printer resolution value, a data characterizing dimensions of the printed image, and a final size value for at least one of the plurality of digital pixel images. A lenticule resolution data is received. A composite image file is formed of the plurality of scaled input digital pixel images, and at least one left-right image file pair is generated from the composite image file. The left-right image file pair are interlaced and printed on a printer associated with the printer resolution value.
Abstract:
A system to capture a plurality of two dimensional digital source images of scene by user, a smart device having a memory device for storing an instruction, a processor in communication with the memory and configured to execute the instruction, a plurality of digital image capture devices in communication with the processor and each image capture device configured to capture a digital image of the scene, the plurality of digital image capture devices positioned linearly in series within approximately an interpupillary distance, wherein a first digital image capture devices is centered proximate a first end of the interpupillary distance, a second digital image capture devices is centered on a second end of the interpupillary distance, and any remaining the plurality of digital image capture devices are evenly spaced therebetween, a display in communication with the processor, display configured to display multidimensional digital image sequence and add audio file thereto.
Abstract:
A system to capture a plurality of two dimensional digital source images of a scene by a user, including a memory device for storing an instruction, a processor in communication with the memory and configured to execute the instruction, a digital image capture device in communication with the processor configured to capture a digital image of the scene, the processor configured to execute an instruction to generate a plurality of two dimensional digital images of the scene from said first two dimensional digital image of the scene via a camera angle rotation of between 1-180 degrees of said first two dimensional digital image of the scene for each of said plurality of two dimensional digital image of the scene as a sequence, and a display in communication with the processor, the display configured to display a multidimensional digital image sequence.
Abstract:
A system to capture a plurality of two dimensional digital source images of scene by user, a smart device having a memory device for storing an instruction, a processor in communication with the memory and configured to execute the instruction, a plurality of digital image capture devices in communication with the processor and each image capture device configured to capture a digital image of the scene, the plurality of digital image capture devices positioned linearly in series within approximately an interpupillary distance, wherein a first digital image capture devices is centered proximate a first end of the interpupillary distance, a second digital image capture devices is centered on a second end of the interpupillary distance, and any remaining the plurality of digital image capture devices are evenly spaced therebetween, a display in communication with the processor, display configured to display multidimensional digital image and add audio file thereto.
Abstract:
A method for simulating a 3-D image sequence from a sequence of 2-D image frames (110), the method comprising: capturing a plurality of 2-D image frames (110) of a scene from a plurality of different observation points, wherein a first, proximal plane and a second, distal plane is identified within each image frame (110) in the sequence, and wherein each observation point maintains substantially the same first, proximal image plane for each image frame; determining a depth estimate for the first, proximal and second, distal plane within each image frame in the sequence; aligning the first, proximal plane of each image frame (110) in the sequence and shifting the second, distal plane of each subsequent image frame (110) in the sequence based on the depth estimate of the second, distal plane for each image frame (110), to produce a modified image frame corresponding to each 2-D image frame; and displaying the modified image frames sequentially. Also disclosed is a system comprising means for carrying out the above method.
Abstract:
A systematic approach to producing multi-dimensional photon images on a computer platform having applications to a plurality of input image(s) from various sources, and applications to coordinate and adjust numerous variables which determine the quality of the image, such as the size of the imported images, the output image size, the resolving power of the viewing screen and the width of the resolving elements, the dots per inch of the output device (or pixels per inch), the desired nearest object, the desired furthest object and the determination of the central or the “key subject”, rules of interphasing, the number of frames or layers, the minimum parallax, and the maximum parallax, and, thus, provide a digital multi-dimensional image without jumping images or fuzzy features or other visual distortions by creating high quality output images both in the form of a printed hardcopy or as a viewed image on an appropriate viewing device. The digital multi-dimensional image platform based system controls the position and path of light from the original object to the human visual system.
Abstract:
A systematic approach to producing multi-dimensional photon images on a computer platform having applications to a plurality of input image(s) from various sources, and applications to coordinate and adjust numerous variables which determine the quality of the image, such as the size of the imported images, the output image size, the resolving power of the viewing screen and the width of the resolving elements, the dots per inch of the output device (or pixels per inch), the desired nearest object, the desired furthest object and the determination of the central or the “key subject”, rules of interphasing, the number of frames or layers, the minimum parallax, and the maximum parallax, and, thus, provide a digital multi-dimensional image without jumping images or fuzzy features or other visual distortions by creating high quality output images both in the form of a printed hardcopy or as a viewed image on an appropriate viewing device. The digital multi-dimensional image platform based system controls the position and path of light from the original object to the human visual system.