Abstract:
Provided are an IC and a method for automatically tuning process and temperature variations. The IC includes: a test circuit unit including test circuit elements having identical element values and variations to a tuning-targeted circuit element and at least one reference circuit element having a smaller variation than the tuning-targeted circuit element; a comparator that obtains a difference between intensities of first and second signals detected from the test circuit unit; and a tuning unit that tunes the variation of the tuning-targeted circuit element according to the difference between the intensities of the first and second signals. Thus, process and temperature variations of a circuit element can be detected and accurately tuned with respect to the circuit element itself. Also, the process and temperature variations can be tuned inside an IC. Thus, the time required for tuning the process and temperature variations can be reduced.
Abstract:
Disclosed herein is a method of preparing an antithrombotic agent from muskrat musk and an antithrombotic agent having a high potency obtained therefrom, wherein the antithrombotic agent is prepared by treating muskrat musk with ethanol to obtain an ethanol extract; carrying out two normal phase column chromatographies while raising the combination ratio of hexane and ethyl acetate to obtain numerous fractions; carrying out thin layer chromatographies and identifying the material patterns of the fractions with UV lamps and 10% sulfuric acid to divide the materials which have a similar moving distance into groups; measuring a thrombin time of each group to isolate a group having a potent antithrombotic activity; carrying out a reverse phase column chromatography while raising the combination ratio of acetonitrile and water to obtain numerous fractions; and isolating an antithrombotic agent material having a high potency therefrom. According to the present invention which provides an antithrombotic agent having a high potency from muskrat musk, the value added of muskrat musk is raised.
Abstract:
An N×N multiple-input multiple-output (MIMO) transceiver is provided. The transceiver includes a plurality of transceivers, each including at least one transceiver circuit; an oscillation unit which is configured to generate a differential signal which is supplied to the at least one transceiver circuit; a plurality of buffers, which are mounted in a bypass line between the at least one transceiver circuit and the oscillation unit and are configured to amplify and bypass the differential signal or input and amplify the differential signal; and a buffer control unit which is configured to control the plurality of buffers to bypass or input the differential signal.
Abstract:
A method and a system for calibrating an input voltage of a voltage controlled oscillator and a digital interface used for calibrating the input voltage. The method includes: setting a lock detection time for tuning a signal phase; setting a lock detection voltage section; setting output frequency values at predetermine spacings; checking connection states of capacitors of the capacitor bank necessary for a lock of the output frequency values; storing information regarding the connection states of the capacitors in the output frequency values; and if one of the output frequency values is determined depending on a change of a channel, setting connection states of the capacitors according to the information regarding the connection state corresponding to the one frequency value. The capacitor bank includes: a predetermined number of capacitors having different capacitances and connected to one another in parallel; and switches connected to the capacitors in series.
Abstract:
An MIM capacitor includes a substrate, a capacitor part having a structure in which a bottom electrode, a dielectric layer and a top electrode are laminated in order, and a ground shield layer formed between the bottom electrode of the capacitor part and the substrate and connected to a predetermined ground terminal. The ground shield layer may be formed of metal or polysilicon, or a layer doped with impurities having a valence of three or five. Also, the ground shield layer has a predetermined patterned structure. Thus, it is possible to minimize power loss due to the substrate.
Abstract:
In a structure of a radio frequency (RF) variable capacitor having a variable range of capacitance between a first minimum value and a first maximum value, and a method of manufacturing the structure, the structure includes a first capacitor, which has a variable range of capacitance between a second minimum value greater than the first minimum value and a second maximum value greater than the first maximum value, and a second capacitor, which is connected in series to the first capacitor and has a capacitance of a fixed value. By the structure and method, a quality factor of a radio frequency (RF) variable capacitor may be increased without adding complex processing steps.
Abstract:
A differential type VCO (Voltage Controllable Oscillator) is disclosed. The VCO has a differential amplifier having a couple of transistors and a couple of LC tanks. At each LC tank, a transformer is connected to form a buffer. An oscillating signal is output through the buffer with no power consumption. Additionally, a capacitor is connected to the secondary coil of the transformer to form a bandpass filter, thereby attenuating a harmonic signal included in the oscillating signal.
Abstract:
A discrete time filter includes a plurality of sampling cells and a first dummy sampling cell. Each of the sampling cells performs a current mode sampling operation based on current input to an input terminal in response to a corresponding one of a plurality of sampling clock signals and is reset in response to a corresponding one of the plurality of sampling clock signals and a first dummy sampling clocks. The first dummy sampling cell alternately performs with the first sampling cell the current mode sampling operation based on current input to the input terminal in response to the first dummy sampling clock signal and is alternately reset with the first sampling cell in response to the first sampling clock signal.
Abstract:
A complementary metal oxide semiconductor voltage controlled oscillator is provided. The voltage controlled oscillator includes an LC tank which is supplied with a power supply voltage, the LC tank oscillating at a certain frequency; a negative resistor including first and second N-channel metal oxide semiconductor field effect transistors (NMOS FETs) to sustain the oscillation of the LC tank; a direct current block to remove a direct current component from the power supply voltage; an alternating current block to apply an alternating current voltage to the gates of the first and second NMOS FETs; a first current mirror including third and fourth NMOS FETs and allowing a current to symmetrically flow in the voltage controlled oscillator, a drain and the gate of the third NMOS FET being connected to a reference voltage supply; and the reference voltage supply applying a direct current voltage to the first current mirror.