Abstract:
A radio frequency (RF) receiver and a method of receiving an RF signal are provided. The RF receiver includes a low-noise amplifying unit which amplifies a received signal while restricting out-of-band interference of the received signal, a sampling unit which performs sampling to convert the amplified signal to a discrete time domain signal, a frequency translation unit which down-converts the discrete time domain signal into a frequency band that enables the discrete time domain signal to be converted into a digital signal and restricts interference from a frequency within an aliasing band according to a sampling frequency, an anti-aliasing filtering unit which prevents aliasing from the down-converted signal, a clock unit which provides the sampling unit, the frequency translation unit, and the anti-aliasing filtering unit with sampling frequencies, and an analog-digital-converter which converts the converted signal into the digital signal.
Abstract:
Provided are an IC and a method for automatically tuning process and temperature variations. The IC includes: a test circuit unit including test circuit elements having identical element values and variations to a tuning-targeted circuit element and at least one reference circuit element having a smaller variation than the tuning-targeted circuit element; a comparator that obtains a difference between intensities of first and second signals detected from the test circuit unit; and a tuning unit that tunes the variation of the tuning-targeted circuit element according to the difference between the intensities of the first and second signals. Thus, process and temperature variations of a circuit element can be detected and accurately tuned with respect to the circuit element itself. Also, the process and temperature variations can be tuned inside an IC. Thus, the time required for tuning the process and temperature variations can be reduced.
Abstract:
A variable inductor is provided, which includes a first lead having both ends to receive a pair of difference signals, a second lead having both ends to receive a pair of the difference signals, and a switch selectively supplying a pair of the difference signals to the second lead by turning on/off according to a control signal. Accordingly, a variable inductor can be implemented that is compact and maximizes the variation rate of inductance.
Abstract:
A dual gate cascade amplifier includes a first transistor and a second transistor electrically connected in series, the second transistor including a first parallel transistor and a second parallel transistor, the first parallel transistor and the second parallel transistor being electrically connected in parallel, a first channel electrically connecting a first end channel region of the first transistor and a second end channel region, wherein one of the first or second end channel regions is a source and the other of the first or second end channel regions is a drain, the second end channel region being a common end channel region shared by the first and second parallel transistors, and a second channel electrically connected to the second end channel region and extending away from the first transistor.
Abstract:
An N×N multiple-input multiple-output (MIMO) transceiver is provided. The transceiver includes a plurality of transceivers, each including at least one transceiver circuit; an oscillation unit which is configured to generate a differential signal which is supplied to the at least one transceiver circuit; a plurality of buffers, which are mounted in a bypass line between the at least one transceiver circuit and the oscillation unit and are configured to amplify and bypass the differential signal or input and amplify the differential signal; and a buffer control unit which is configured to control the plurality of buffers to bypass or input the differential signal.
Abstract:
An adjustable inductor includes a first conductor line to receive an alternating current (AC) signal, a second conductor line configured in a loop arrangement, to generate an inducting current upon receiving the AC signal at the first conductor line, and a switch to adjust an inductance of the first conductor line by switching a loop connection of the second conductor line according to an external control signal.
Abstract:
Disclosed is a dual-band voltage-controlled oscillator using bias switching and output-buffer multiplexing. The dual-band voltage-controlled oscillator includes a power supply unit for supplying a source voltage; plural voltage-controlled oscillation units for outputting different oscillation frequencies according to controls of a certain tuning voltage; plural bias units for generating driving voltages for driving the voltage-controlled oscillation units and supplying the driving voltages to the voltage-controlled oscillation units; and plural buffers for selectively outputting oscillation frequencies of the plural voltage-controlled oscillation units. The present invention implements the dual-band voltage-controlled oscillator through bias switching and output-buffer multiplexing, which brings an advantage of elimination of interference between output frequencies to enhance phase noise characteristics.
Abstract:
An on-chip transformer balun includes a primary winding as an input terminal of the on-chip transformer balun, and a secondary winding as an output terminal of the on-chip transformer balun, wherein one of the primary winding and secondary winding is formed of a plurality of metal layers in which a spiral trace portion excluding an underpass is disposed on mutually different layers to have an asymmetrical structure.
Abstract:
A dual gate cascade amplifier includes a first transistor and a second transistor electrically connected in series, the second transistor including a first parallel transistor and a second parallel transistor, the first parallel transistor and the second parallel transistor being electrically connected in parallel, a first channel electrically connecting a first end channel region of the first transistor and a second end channel region, wherein one of the first or second end channel regions is a source and the other of the first or second end channel regions is a drain, the second end channel region being a common end channel region shared by the first and second parallel transistors, and a second channel electrically connected to the second end channel region and extending away from the first transistor.
Abstract:
A radio frequency voltage controlled oscillator (RF VCO) includes a differential oscillator including two field effect transistors (FETs) in which an electric current flows laterally to a substrate and a current source including a bipolar transistor in which the electric current flows in a direction either perpendicular or lateral to the substrate from an emitter to a collector via a base. Therefore, 1/f noise is very small. Resultantly, the RF VCO using the bipolar junction transistor as the current source reduces the 1/f noise generated by the current source of a RF CMOS VCO and, ultimately, the phase noise of the VCO.