Abstract:
The invention is a punch through voltage regulator having an active region formed on a substrate by any one of four different methods. Each method includes recessing the substrate substantially along the periphery of the regulator active region, selectively doping the regulator active region through portions of the recess, filling the recesses with substrate oxide to isolate the active region from the substrate and forming conductors to selectively doped portions of the active region to serve as electrode connections. For P doped substrates N type doping is introduced via the recesses and in a second method the recesses are deepened and P type doping is introduced into the substrate to change the doping in the active region. For N doped substrates P type doping is introduced via the recesses and when the recesses are deepened in the fourth method, N type doping is introduced into the substrate to change the doping of the active portion.
Abstract:
The invention is a transistor or array thereof and method for producing same in sub-micron dimensions on a silicon substrate doped P or N type by forming slots in spaced apart relation across the substrate to define semi-arrays of V shaped intermediate regions which will become a plurality of transistors. Silicon oxide fills these slots and separates the transistor regions from the substrate. Orthogonal slots divide the semi-arrays into individual transistor active regions which are doped by one of N or P doping introduced into each active regions via the orthogonal slots and driven in to comprise the emitter and collector regions on respective sides of original substrate comprising the base regions. Metallization patterns complete electrical connections to the emitter base and collector regions and silicon oxide substantially covers the periphery of each active region for total isolation. Each transistor may further comprise a doped region called P or N doping extending into and across the top of the base region to reduce space region contact resistance and to provide an electron reflecting potential barrier. Each transistor may further comprise a doped skin of either P or N doping to force electrons or holes toward the center of the base region.
Abstract:
An array of hundreds of devices may be simultaneously processed on a chip to sub-micron dimensions by establishing tiny active regions for each transistor surrounded by field oxide filled motes or slotted regions, wherein the slots are utilized to dope the substrate within the action region. The N type substrate is double energy boron planted through one surface to establish a P region to a given depth. This surface is oxidized and photoresist masked conventionally to open regions for the slots which are ion milled or ODE etched to a given depth. N+ regions are established by the slots by ion implanting at an angle such that the entire depth of the slot is not doped but rather the doping is confined to a region within the double energy P implanted depth. Drive-in diffusion enlarges the N+ areas for the emitter and collecter and oxidation fills the mote insulating regions around the active area.The oxide is stripped and the P region enhanced to P+ at the surface, with silox being deposited and opened for metal contacts to the P+ region for the base and the emitter and collector regions. The doping profile of the base region provides a potential barrier to minimize the flow of electrons toward the surface because the emitter electrons are channeled through the less heavily doped part of the base region to the collector.
Abstract:
The invention includes methods and apparatus for providing relatively long conductors on integrated chips with substantially reduced RC time constants. The preferred mode utilizes a substrate having a metallization pattern wherein etching or milling into the substrate creates a cavity with a metallization conductor disposed in the mouth of the cavity, said cavity being metallized to provide the second conductor. A similar structure may be formed by utilizing orientation dependent etchant which attacks the (111) surface much quicker than the (100) surface to provide an etched V-shaped cavity wherein the first conductor is still an elongated metallization segment in the mouth of the V, and the V is metallized to provide the second conductor. Also, a single conductor, such as the elongated metallization strip may be extended to a conductor on the reverse side of the substrate by providing a pyramid shaped hole from the first conductor through the substrate, which hole is metallized to extend the first conductor to the second conductor via the hole in the substrate.
Abstract:
The invention includes methods and apparatus for providing relatively long conductors on integrated chips with substantially reduced RC time constants. The preferred mode utilizes a substrate having a metallization pattern wherein etching or milling into the substrate creates a cavity with a metallization conductor disposed in the mouth of the cavity, said cavity being metallized to provide the second conductor. A similar structure may be formed by utilizing orientation dependent etchant which attacks the (111) surface much quicker than the (100) surface to provide an etched V-shaped cavity wherein the first conductor is still an elongated metallization segment in the mouth of the V, and the V is metallized to provide the second conductor. Also, a single conductor, such as the elongated metallization strip may be extended to a conductor on the reverse side of the substrate by providing a pyramid shaped hole from the first conductor through the substrate, which hole is metallized to extend the first conductor to the second conductor via the hole in the substrate.